RESUMO
Pasta assortments fortified with high quality foods are a modern nutritional trends. This study, explored the effects of fortification with linseed flour (LF) and linseed oil (LO) on durum wheat pasta characteristics. Wheat flour semolina was replaced with 5%, 10% and 15% of LF or 1%, 2.5% and 5% of LO. Control pasta CP (without LF or LO addition), LF-enriched pasta LFP 5%, LFP 10% and LFP 15% and LO-enriched pasta LOP 1%, LOP 2.5% and LOP 5% was compared for the proteins, fat and phenolic contents and fatty acids (FA) profile. Impact on lipid oxidation and sensory evaluation were also determined. Fortification of pasta with LF improved significantly (p < 0.05) the contents of protein, fat and phenolic compared to CP whereas the enrichment of pasta with LO resulted in a significant increase (p < 0.05) in the content of fat and a significant decrease in protein and phenolic contents. All the formulations decreased the saturated FA percent and increased the polyunsaturated FA percent with enhancement of omega-3 FA content. Antioxidant activity measured by FRAP and DPPH assays was improved after the fortification. For lipid oxidation, the replacement of semolina by LF or LO promoted an increase (p < 0.05) on TBARS values in level-dependent manner. Regarding sensory evaluation, the two types of fortification did not affect the taste; flavor and aroma of cooked pasta, but LOP 5% showed the highest score of the overall acceptability. The results recommended the possibility of producing pasta supplemented with LF or LO (even at a level of 15% and 5% respectively) as a functional food.
Assuntos
Linho , Farinha , Alimentos Fortificados , Óleo de Semente do Linho , Sensação , Alimentos Fortificados/análise , Alimentos Fortificados/normas , Óleo de Semente do Linho/química , Farinha/análise , Farinha/normas , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Antioxidantes/análise , Fenóis/análise , Ácidos Graxos/análise , OxirreduçãoRESUMO
A method to synthesize stable, raspberry-like nanoparticles (NPs), using surface grafting of poly(glycidyl methacrylate) (PGMA) brushes on a polystyrene (PS) core with varying grafting densities, is reported. A two-step functionalization reaction of PGMA epoxide groups comprising an amination step first using ethylene diamine and then followed by a quaternization using glycidyltrimethylammonium chloride generates permanently and positively charged polyelectrolyte brushes, which result in both steric and electrostatic stabilization. The dispersion stability of the brush-bearing NPs is dramatically improved compared to that of the pristine PS core in salt solutions at ambient (25 °C) and elevated temperatures (60 °C). Additionally, the grafted polyelectrolyte chains undergo a reversible swelling in the presence of different ionic strength (IS) salts, which modulate the surface properties, including roughness, stiffness, and adhesion. An atomic force microscope under both dry and wet conditions was used to image conformational changes of the polyelectrolyte chains during the swelling and deswelling transitions as well as to probe the nanomechanical properties by analyzing the corresponding force-sample separation curves. The quaternized polyelectrolyte brushes undergo a conformational transition from a collapsed state to a swelled state in the osmotic brush (OB) regime triggered by the osmotic gradient of mobile ions to the interior of the polymer chain. At IS â¼ 1 M, the brushes contract and the globules reform (salted brush state) as evidenced by an increase in the surface roughness and a reduction in the adhesion of the brushes. Beyond IS â¼ 1 M, quartz crystal microbalance with dissipation monitoring measurements show that salt uptake continues to take place predominantly on the exterior surface of the brush since salt adsorption is not accompanied by a size increase as measured by dynamic light scattering. The study adds new insights into our understanding of the behavior of NPs bearing salt-responsive polyelectrolyte brushes with adaptive swelling thresholds that can ultimately modulate surface properties.
RESUMO
Background: Organic aciduria diseases (OADs) occur worldwide, with differences in prevalence and patterns between populations. Objectives: To describe the spectrum of OADs identified in Tunisia over a 35-years period. Materials and Methods: This retrospective study included patients who were diagnosed with OADs between 1987 and 2022 in the Laboratory of Biochemistry, Rabta Hospital, Tunisia. Organic acids were analyzed using gas chromatography-mass spectrometry. Results: A total of 30,670 urine samples were analyzed for OADs, of which 471 were positive for OADs. The estimated incidence of OADs in Tunisia was 6.78 per 100,000 live births. Methylmalonic (n = 146) and propionic (n = 90) acidurias were the most common OADs (estimated incidence: 2.10 and 1.30 per 100,000 live births, respectively). There were 54 cases of L-2-hydroxyglutatric acidurias and 30 cases of pyroglutamic acidurias, which makes it one of the highest in the world. The main clinical features were hypotonia (65%) and feeding difficulties (41%). Age at diagnosis was highly variable, ranging from 1 day to 49 years. Only 27% of the patients were diagnosed within the first month of life. The prevalence of OADs was highest in the Center-East and Southeast regions. Conclusions: In Tunisia, OADs are relatively frequent, but there are shortcomings regarding the diagnosis of these disorders. The frequency and health/social impact of these disorders warrant the need for implementing newborn screening programs and suitable patient management.
RESUMO
Aging contributes to the progressive loss of cellular biological functions and increases the risk of age-related diseases. Cardiovascular diseases, some neurological disorders and cancers are generally classified as age-related diseases that affect the lifespan of individuals. These diseases result from the accumulation of cellular damage and reduced activity of protective stress response pathways, which can lead to inflammation and oxidative stress, which play a key role in the aging process. There is now increasing interest in the therapeutic effects of edible plants for the prevention of various diseases, including those associated with aging. It has become clear that the beneficial effects of these foods are due, at least in part, to the high concentration of bioactive phenolic compounds with low side effects. Antioxidants are the most abundant, and their high consumption in the Mediterranean diet has been associated with slower ageing in humans. Extensive human dietary intervention studies strongly suggest that polyphenol supplementation protects against the development of degenerative diseases, especially in the elderly. In this review, we present data on the biological effects of plant polyphenols in the context of their relevance to human health, ageing and the prevention of age-related diseases.
Assuntos
Fenóis , Polifenóis , Humanos , Idoso , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Estresse Oxidativo , EnvelhecimentoRESUMO
Aging is a complex biological process which can be associated with skeletal muscle degradation leading to sarcopenia. The aim of this study consisted i) to determine the oxidative and inflammatory status of sarcopenic patients and ii) to clarify the impact of oxidative stress on myoblasts and myotubes. To this end, various biomarkers of inflammation (C-reactive protein (CRP), TNF-α, IL-6, IL-8, leukotriene B4 (LTB4)) and oxidative stress (malondialdehyde, conjugated dienes, carbonylated proteins and antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase) as well as oxidized derivatives of cholesterol formed by cholesterol autoxidation (7-ketocholesterol, 7ß-hydroxycholesterol), were analyzed. Apelin, a myokine which contributes to muscle strength, was also quantified. To this end, a case-control study was conducted to evaluate the RedOx and inflammatory status in 45 elderly subjects (23 non-sarcopenic; 22 sarcopenic) from 65 years old and higher. SARCopenia-Formular (SARC-F) and Timed Up and Go (TUG) tests were used to distinguish between sarcopenic and non-sarcopenic subjects. By using red blood cells, plasma and/or serum, we observed in sarcopenic patients an increased activity of major antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) associated with lipid peroxidation and protein carbonylation (increased level of malondialdehyde, conjugated dienes and carbonylated proteins). Higher levels of 7-ketocholesterol and 7ß-hydroxycholesterol were also observed in the plasma of sarcopenic patients. Significant differences were only observed with 7ß-hydroxycholesterol. In sarcopenic patients comparatively to non-sarcopenic subjects, significant increase of CRP, LTB4 and apelin were observed whereas similar levels of TNF-α, IL-6 and IL-8 were found. The increased plasma level of 7-ketocholesterol and 7ß-hydroxycholesterol in sarcopenic patients led us to study the cytotoxic effect of these oxysterols on undifferentiated (myoblasts) and differentiated (myotubes) murine C2C12 cells. With the fluorescein diacetate and sulforhodamine 101 assays, an induction of cell death was observed both on undifferentiated and differentiated cells: the cytotoxic effects were less pronounced with 7-ketocholesterol. In addition, IL-6 secretion was never detected whatever the culture conditions, TNF-α secretion was significantly increased on undifferentiated and differentiated C2C12 cells treated with 7-ketocholesterol- and 7ß-hydroxycholesterol, and IL-8 secretion was increased on differentiated cells. 7-ketocholesterol- and 7ß-hydroxycholesterol-induced cell death was strongly attenuated by α-tocopherol and Pistacia lentiscus L. seed oil both on myoblasts and/or myotubes. TNF-α and/or IL-8 secretions were reduced by α-tocopherol and Pistacia lentiscus L. seed oil. Our data support the hypothesis that the enhancement of oxidative stress observed in sarcopenic patients could contribute, especially via 7ß-hydroxycholesterol, to skeletal muscle atrophy and inflammation via cytotoxic effects on myoblasts and myotubes. These data bring new elements to understand the pathophysiology of sarcopenia and open new perspectives for the treatment of this frequent age-related disease.
Assuntos
Antioxidantes , Sarcopenia , Humanos , Camundongos , Animais , Idoso , Catalase , Apelina/metabolismo , Apelina/farmacologia , Antioxidantes/farmacologia , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Sarcopenia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Estudos de Casos e Controles , Interleucina-6/metabolismo , Leucotrieno B4/metabolismo , Leucotrieno B4/farmacologia , Hidroxicolesteróis/metabolismo , Cetocolesteróis/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase , Biomarcadores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Óleos de Plantas/metabolismo , Óleos de Plantas/farmacologiaRESUMO
The aim was to investigate this relationship by calculating 1) the correlation between peak troponin-C (peak-cTnI), levels of oxidative stress biomarkers, including lipid peroxidation products (malondialdehyde (MDA), conjugated dienes (CD)), and antioxidant enzyme activity (glutathione peroxidase (GPx)), and HbA1c and 2) the correlation between HbA1c and serum angiotensin-converting enzyme (ACE) activity, and its impact on the rate pressure product (RPP) in acute myocardial infarction (AMI). A case-control study was performed in 306 AMI patients having undergone coronary angiography and on 410 controls. GPx activity was reduced in association with increased MDA and CD in patients. Peak-cTnI was positively correlated with HbA1c, MDA, and CD levels. Serum ACE activity was negatively correlated with GPx. HbA1c was positively correlated with ACE activity and RPP. Linear regression analysis showed that peak-cTnI, ACE activity and HbA1c are significant predictors of AMI. Elevated HbA1c and peak-cTnI levels are associated with RPP elevation causing AMI. In conclusions, patients with elevated HbA1c, elevated ACE activity and cTnI are at increased risk of AMI with increasing RPP. Patients at risk of AMI can be identified at an early stage if the biomarkers HbA1c, ACE activity, and cTnI are measured and preventive measures are taken in a targeted manner.
Assuntos
Infarto do Miocárdio , Troponina I , Humanos , Hemoglobinas Glicadas , Estudos de Casos e Controles , Pressão Sanguínea , Biomarcadores , Estresse Oxidativo , AngiotensinasRESUMO
Circulating fatty acids (FA) have an endogenous or exogenous origin and are metabolized under the effect of many enzymes. They play crucial roles in many mechanisms: cell signaling, modulation of gene expression, etc., which leads to the hypothesis that their perturbation could be the cause of disease development. FA in erythrocytes and plasma rather than dietary FA could be used as a biomarker for many diseases. Cardiovascular disease was associated with elevated trans FA and decreased DHA and EPA. Increased arachidonic acid and decreased Docosahexaenoic Acids (DHA) were associated with Alzheimer's disease. Low Arachidonic acid and DHA are associated with neonatal morbidities and mortality. Decreased saturated fatty acids (SFA), increased monounsaturated FA (MUFA) and polyunsaturated FA (PUFA) (C18:2 n-6 and C20:3 n-6) are associated with cancer. Additionally, genetic polymorphisms in genes coding for enzymes implicated in FA metabolism are associated with disease development. FA desaturase (FADS1 and FADS2) polymorphisms are associated with Alzheimer's disease, Acute Coronary Syndrome, Autism spectrum disorder and obesity. Polymorphisms in FA elongase (ELOVL2) are associated with Alzheimer's disease, Autism spectrum disorder and obesity. FA-binding protein polymorphism is associated with dyslipidemia, type 2 diabetes, metabolic syndrome, obesity, hypertension, non-alcoholic fatty liver disease, peripheral atherosclerosis combined with type 2 diabetes and polycystic ovary syndrome. Acetyl-coenzyme A carboxylase polymorphisms are associated with diabetes, obesity and diabetic nephropathy. FA profile and genetic variants of proteins implicated in FA metabolism could be considered as disease biomarkers and may help with the prevention and management of diseases.
RESUMO
Particle-stabilized emulsions (Pickering emulsions) have recently attracted significant attention in scientific studies and for technological applications. The interest stems from the ease of directly assembling the particles at interfaces and modulating the interfacial properties. In this paper, we demonstrate the formation of stable, practical emulsions leveraging the assembly of ionizable, pH responsive silica nanoparticles, surface-functionalized by a mixture of silanes containing amine/ammonium groups, which renders them positively charged. Using pH as the trigger, the assembly and the behavior of the emulsion are controlled by modulating the charges of the functional groups of the nanoparticle and the oil (crude oil). In addition to their tunable charge, the particular combination of silane coupling agents leads to stable particle dispersions, which is critical for practical applications. Atomic force microscopy and interfacial tension (IFT) measurements are used to monitor the assembly, which is controlled by both the electrostatic interactions between the particles and oil and the interparticle interactions, both of which are modulated by pH. Under acidic conditions, when the surfaces of the oil and the nanoparticles (NPs) are positively charged, the NPs are not attracted at the interface and there is no significant reduction in the IFT. In contrast, under basic conditions in which the oil carries a high negative charge and the amine groups on the silica are deprotonated while still positively charged because of the ammonium groups, the NPs assemble at the interface in a closely packed configuration yielding a jammed state with a high dilatational modulus. As a result, two oil droplets do not coalesce even when pushed against each other and the emulsion stability improves significantly. The study provides new insights into the directed assembly of nanoparticles at fluid interfaces relevant to several applications, including environmental remediation, catalysis, drug delivery, food technology, and oil recovery.
RESUMO
A targeted and controlled delivery of molecular surfactants at oil-water interfaces using the directed assembly of nanoparticles, NPs, is reported. The mechanism of NP assembly at the interface and the release of molecular surfactants is followed by laser scanning confocal microscopy and surface force spectroscopy. The assembly of positively charged polystyrene NPs at the oil-water interface was facilitated by the introduction of carboxylic acid groups in the oil phase (e.g., by adding 1 wt % stearic acid to hexadecane to produce a model oil). The presence of positively charged NPs consistently lowers the stiffness of the water-oil interface. The effect is lessened, when the NPs are present in a solution of NaCl or deionized water at pH 2, consistent with a less dense monolayer of NPs at the interface in the last two systems. In addition, the NPs reduce the interfacial adhesion (i.e., the "stickiness" of the interface or, put differently, the pull-off force experienced by the atomic force microscopy (AFM) tip during retraction). After the assembly, the NPs can release a previously loaded cargo of surfactant molecules, which then facilitate the formation of a much finer oil-water emulsion. As a proof of concept, we demonstrate the release of octadecyl amine, ODA, that has been incorporated into the NPs prior to the assembly. The release of ODA causes the NPs to detach from the interface altering the interfacial properties and leads to finer oil droplets. This approach can be exploited in applications in several fields ranging from pharmaceutical and cosmetics to hydrocarbon recovery and oil-spill remediation, where a targeted and controlled release of surfactants is wanted.
RESUMO
BACKGROUND: Conventional chemotherapeutic treatment of colorectal cancer has low efficiency because of its high toxicity. Several studies identified natural compounds as potential antitumor agents by inducing cancer cell cycle arrest or apoptosis and exhibiting a potential synergy in drug combination therapy. Natural compounds derived from plants represent an important source of pharmacologic agents toward several diseases. For example, the Tunisian Thymelaeaceae plants are used in folk medicine for the treatment of different pathologies such as diabetes and hypertension. OBJECTIVE: The Thymelaea hirsuta L. extracts were evaluated for their anti-tumoral activities and their adjuvant potential that could be used in conventional colorectal cancer therapy. METHODS: Fractionation of total methanolic extract from the plant leaves provided 4 fractions using vacuum liquid chromatography. The cytotoxic activities of these fractions were tested toward colorectal cancer cells. RESULTS: Ethyl acetate fraction (E2 fraction) induced cell cycle arrest and apoptosis by activating caspase-3. E2 fraction inhibited cell invasion by reducing integrin α5 expression and FAK phosphorylation. Moreover, E2 fraction potentialized colorectal cancer cells to 5-FU treatment. CONCLUSION: The selected plant Thymelaea hirsuta is the source of natural compounds that inhibited cell growth and invasion and induced cell cycle arrest in colorectal cancer cells. The most interesting result was their potential synergy in 5-FU combination treatment. Further analysis will identify the active compounds and confirm their role in chemotherapeutic treatment by sensitizing colorectal cancer cell to anti-cancer drugs.
Assuntos
Antineoplásicos , Neoplasias Colorretais , Thymelaeaceae , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Thymelaeaceae/química , Apoptose , Linhagem Celular TumoralRESUMO
BACKGROUND: Platelet aggregation and advanced glycation end products (AGEs) and oxidative stress are known as key factors for the development of cardiovascular diseases and diabetic complications. In this context, fruit and vegetable consumption, good sources of antioxidant compounds have been largely reported as an effective way of preventing human against these diseases. The current study focuses on the evaluation of antioxidant, antiplatelet and anti-glycation activities of pomegranate (Punica granatum L.) flowers (PF), leaves (PL), peel (PP) juice (PJ) and seeds oil (PSO). METHODS: Antioxidant activities was measured against ABTS radical and lipid peroxidation. Antiglycation activity was determined using the formation of AGE fluorescence intensity in the BSA/ribose system. Antiplatelet activity was measured in platelet rich plasma (PRP) against adenosine diphosphate (ADP), Collagen and arachidonic acid (AA). RESULTS: PF extract displayed the highest antioxidant activity against ABTS and lipid peroxidation with IC50 values of 0.7 mg/mL and 0.63 mg/mL respectively. For anti-glycation activity, PP, PF and PL inhibited moderately the pentosidine-like AGEs formation compared to positive controls with AGE-IC50 value of 0.4 mg/mL. PJ and PSO haven't any anti-AGE effect. All the extracts selectively inhibited platelet aggregation caused by one, two or three inducers in dose dependent manner. PF was the most potent inhibitor caused by all three inducers, with inhibitory effects ranging from 35.6 to 66.6%. PP and PJ exhibited antiplatelet effect against both ADP and collagen and PL and PSO only against AA. CONCLUSIONS: These results suggest that some pomegranate extracts exert potential in vitro anti-glycative and antiplatelet activities.
Assuntos
Antioxidantes , Punica granatum , Humanos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Frutas , Produtos Finais de Glicação Avançada , Colágeno , Difosfato de AdenosinaRESUMO
Aging is a process associated with life [...].
Assuntos
Citoproteção , Rejuvenescimento , Rejuvenescimento/fisiologia , Suplementos NutricionaisRESUMO
In this work, we demonstrated the ability of the cyanobacterium Pseudanabaena/Limnothrix sp. to produce ultra-small silver nanoparticlesin the forms of metallic silver (Ag0) and silver oxides (AgxOy) via a facile green synthetic process. The biological compounds in the cyanobacterial cellular extract acted both as reducing agents for silver ions and functional stabilizing agents for the silver nanoparticles. Furthermore, the antibacterical activity of the as-synthesized nanoparticles against Gram-negative Escherichia coli and Gram-positive Corynebacterium glutamicum bacterial cells was evaluated. The experimental results revealed a remarkable bactericidal activity of the nanoparticles that was both time-dependent and dose-dependent. In addition to their excellent bactericidal properties, the developed nanoparticles can be used as nanosupports in various environmental, biological, and medical applications.
RESUMO
OBJECTIVES: The aim of the study was to analyze the performance of the anti-mullerian hormone (AMH) level for the diagnosis of polycystic ovary syndrome in women with morbid obesity. STUDY DESIGN: A single-centre cross-sectional study was conducted in 50 women of reproductive age with a body mass index (BMI) ≥ 40 kg/m2. Each patient underwent a clinical examination, biological and hormonal assays, and an ovarian ultrasound between the third and the fifth day of the menstrual cycle. Polycystic ovary syndrome was diagnosed according to the Rotterdam's criteria. RESULTS: The mean age of participants was 34.2 ± 7.5 years. Polycystic ovary syndrome was diagnosed in 20 women (40%). Age and anthropometric parameters did not differ between women with and without polycystic ovary syndrome. The mean AMH level was significantly higher in women with polycystic ovary syndrome (3.4 ± 3.6 vs 1.3 ± 1.2 ng/ml, p=0.010). It was positively correlated with the Ferriman and Gallwey score (r=0.496, p=0.016), total testosterone level (r=0.524, p < 10-3) and the LH/FSH ratio (r=0.290, p=0.046). In women aged between 35 and 45 years, the optimum cut-off level for the diagnosis of polycystic ovary syndrome was 0.81 ng/mL, providing a sensitivity and a specificity of 90 and 71%, respectively with an area under the ROC curve of 0.857. CONCLUSIONS: AMH level was significantly higher in morbid obese women with polycystic ovary syndrome compared with those without polycystic ovary syndrome. Specific thresholds for this population must be assessed to improve the sensitivity and specificity of AMH for the diagnosis of polycystic ovary syndrome.
Assuntos
Obesidade Mórbida , Hormônios Peptídicos , Síndrome do Ovário Policístico , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Hormônio Antimülleriano , Estudos Transversais , Hormônio Luteinizante , Obesidade Mórbida/complicações , Obesidade Mórbida/diagnóstico , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/diagnóstico , MasculinoRESUMO
Flumequine (FLUM), a quinolone-derived antibiotic is one of the most prescribed drugs in aquaculture farms. However, its intensive use becomes worrisome because of its environmental risks and the emergence of FLUM-resistant bacteria. To overcome these problems we propose in this study the encapsulation and the delivery of FLUM by titanate nanotubes (TiNTs). Optimal FLUM loading was reached by suspending the dehydrated powder nanomaterials (FLUM : TiNTs ratio = 1 : 5) in ethanol. The drug entrapment efficiency was calculated to be 80% approximately with a sustained release in PBS at 37 °C up to 5 days. Then FLUM@TiNTs was evaluated for both its in vitro drug release and antimicrobial activity against Escherichia coli (E. coli). Spectacularly high antibacterial activity compared to those of free FLUM antibiotic was obtained confirming the efficiency of TiNTs to protect FLUM from rapid degradation and transformation within bacteria improving thereby its antibacterial effect. Indeed FLUM@TiNTs was efficient to decrease gradually the bacterial viability to reach ≈5% after 5 days versus ≈75% with free FLUM. Finally, the ex vivo permeation experiments on sea bass (Dicentrachus labrax) intestine shows that TiNTs act to increase the intestinal permeation of FLUM during the experiment. Indeed the encapsulated FLUM flux increased 12 fold (1.46 µg cm2 h-1) compared to the free antibiotic (0.18 µg cm2 h-1). Thanks to its physical properties (diameter 10 nm, tubular shape ) and its high stability in the simulated intestinal medium, TiNTs are easy internalized by enterocytes, thus involving an endocytosis mechanism, and then improve intestinal permeation of FLUM. Taken together, FLUM@TiNTs hold potential as an effective approach for enhancing the antimicrobial activity of FLUM and pave the way not only for future pharmacokinetic studies in the treatment and targeting of fish infections but also for instating of novel strategies that overcome the challenges associated with the abusive use of antibiotics in fish farming.
RESUMO
Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7ß-hydroxycholesterol (7ß-OHC; 50⯵M, 24â¯h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100⯵g/mL) as well as α-tocopherol (400⯵M; reference cytoprotective agent) to counteract the toxic effects of 7ß-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7ß-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7ß-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7ß-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal ß-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal ß-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).
Assuntos
Silybum marianum , alfa-Tocoferol , Animais , Antioxidantes/farmacologia , Flavonoides , Humanos , Hidroxicolesteróis , Camundongos , Silybum marianum/metabolismo , Mioblastos/metabolismo , Óleos de Plantas , RNA Mensageiro , Espécies Reativas de Oxigênio/metabolismo , alfa-Tocoferol/farmacologiaRESUMO
The olive oil industry is subject to significant fraudulent practices that can lead to serious economic implications and even affect consumer health. Therefore, many analytical strategies have been developed for olive oil's geographic authentication, including multi-elemental and isotopic analyses. In the first part of this review, the range of multi-elemental concentrations recorded in olive oil from the main olive oil-producing countries is discussed. The compiled data from the literature indicates that the concentrations of elements are in comparable ranges overall. They can be classified into three categories, with (1) Rb and Pb well below 1 µg kg-1; (2) elements such as As, B, Mn, Ni, and Sr ranging on average between 10 and 100 µg kg-1; and (3) elements including Cr, Fe, and Ca ranging between 100 to 10,000 µg kg-1. Various sample preparations, detection techniques, and statistical data treatments were reviewed and discussed. Results obtained through the selected analytical approaches have demonstrated a strong correlation between the multi-elemental composition of the oil and that of the soil in which the plant grew. The review next focused on the limits of olive oil authentication using the multi-elemental composition method. Finally, different methods based on isotopic signatures were compiled and critically assessed. Stable isotopes of light elements have provided acceptable segregation of oils from different origins for years already. More recently, the determination of stable isotopes of strontium has proven to be a reliable tool in determining the geographical origin of food products. The ratio 87Sr/86Sr is stable over time and directly related to soil geology; it merits further study and is likely to become part of the standard tool kit for olive oil origin determination, along with a combination of different isotopic approaches and multi-elemental composition.
Assuntos
Isótopos , Solo , Geografia , Azeite de Oliva , EstrôncioRESUMO
Saffron (Crocus sativus L.) is a medicinal plant, originally cultivated in the East and Middle East, and later in some Mediterranean countries. Saffron is obtained from the stigmas of the plant. Currently, the use of saffron is undergoing a revival. The medicinal virtues of saffron, its culinary use and its high added value have led to the clarification of its phytochemical profile and its biological and therapeutic characteristics. Saffron is rich in carotenoids and terpenes. The major products of saffron are crocins and crocetin (carotenoids) deriving from zeaxanthin, pirocrocin and safranal, which give it its taste and aroma, respectively. Saffron and its major compounds have powerful antioxidant and anti-inflammatory properties in vitro and in vivo. Anti-tumor properties have also been described. The goal of this review is to present the beneficial effects of saffron and its main constituent molecules on neuropsychiatric diseases (depression, anxiety and schizophrenia) as well as on the most frequent age-related diseases (cardiovascular, ocular and neurodegenerative diseases, as well as sarcopenia). Overall, the phytochemical profile of saffron confers many beneficial virtues on human health and, in particular, on the prevention of age-related diseases, which is a major asset reinforcing the interest for this medicinal plant.
Assuntos
Crocus , Plantas Medicinais , Envelhecimento , Crocus/química , Humanos , Nutrientes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêuticoRESUMO
Characterization of complex oil emulsions is critical yet challenging both in science and in many industrial applications. Here we demonstrate for the first time the use of flow cytometry as a fast method for characterizing complex, polydisperse oil-water emulsions. Owing to our interest in understanding how the presence of specific ions might affect the properties of oil-water emulsions including size, polydispersity, and complexity, we present a systematic study of oil emulsions in deionized water and various brines of different ionic strength. Forward scatter (FSC) and side scatter (SSC) intensities associated with detailed statistics were judiciously combined to provide a better understanding of these complex systems. We find that the type and concentration profiles of ions around the oil droplets affect significantly the properties of the emulsion. Weakly hydrated cations NH4+ and Ca2+ appear to be more effective in screening the charge of oil droplets compared to the monovalent Na+ and divalent Mg2+ ions, respectively. As a result, coalescence and formation of larger droplets are seen in the case of NH4Cl and CaCl2 compared to NaCl and MgCl2, respectively. In addition, weakly hydrated anions such as Cl- can come closer to the oil surface and, thus, decrease the effective screening that the Na+ ions provide as compared to SO42- ions, which leads to more stable emulsions in NaCl compared to Na2SO4. In addition to these specific findings, the work demonstrates the utility of the technique as a new tool for characterizing oil emulsions in a wide spectrum of fields ranging from food to oil and gas applications.
Assuntos
Água , Emulsões , Citometria de Fluxo , Concentração Osmolar , Tamanho da PartículaRESUMO
Abstract Phoenix dactylifera L. has traditionally been used as a medicine in many cultures. The aim of this study was to evaluate the nutritional properties, aromatic compounds, total phenolic content and the antioxidant activity of ten ripe date fruit varieties grown in Tunisia. Sugar profiles were analyzed by high performance liquid chromatography, while fatty acid compounds were detected by gas chromatography and aromatic compounds were analyzed by GC-Electron Impact Mass Spectroscopy. Total phenolic contents were measured using colorimetric methods, whereas antioxidant capacities were evaluated in vitro using DPPH and ABTS radicals. It has been found that total sugars are the predominant component in all date varieties, followed by moisture, along with moderate amounts of proteins, ash, and fats. Multivariate tests based on the volatile compounds profile showed significant differences among varieties. Between the sixty-two volatile compounds detected, alcohols, aldehydes and unsaturated hydrocarbons constituted the main chemical classes. The date varieties exhibited strong antioxidant potential that correlated with phenolic content. In conclusion date varieties can play a major role in human nutrition and health because of their wide range of valuable nutritional components and natural antioxidants that could potentially be considered as a functional food ingredient.