Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Langmuir ; 40(11): 5837-5849, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38457691

RESUMO

A method to synthesize stable, raspberry-like nanoparticles (NPs), using surface grafting of poly(glycidyl methacrylate) (PGMA) brushes on a polystyrene (PS) core with varying grafting densities, is reported. A two-step functionalization reaction of PGMA epoxide groups comprising an amination step first using ethylene diamine and then followed by a quaternization using glycidyltrimethylammonium chloride generates permanently and positively charged polyelectrolyte brushes, which result in both steric and electrostatic stabilization. The dispersion stability of the brush-bearing NPs is dramatically improved compared to that of the pristine PS core in salt solutions at ambient (25 °C) and elevated temperatures (60 °C). Additionally, the grafted polyelectrolyte chains undergo a reversible swelling in the presence of different ionic strength (IS) salts, which modulate the surface properties, including roughness, stiffness, and adhesion. An atomic force microscope under both dry and wet conditions was used to image conformational changes of the polyelectrolyte chains during the swelling and deswelling transitions as well as to probe the nanomechanical properties by analyzing the corresponding force-sample separation curves. The quaternized polyelectrolyte brushes undergo a conformational transition from a collapsed state to a swelled state in the osmotic brush (OB) regime triggered by the osmotic gradient of mobile ions to the interior of the polymer chain. At IS ∼ 1 M, the brushes contract and the globules reform (salted brush state) as evidenced by an increase in the surface roughness and a reduction in the adhesion of the brushes. Beyond IS ∼ 1 M, quartz crystal microbalance with dissipation monitoring measurements show that salt uptake continues to take place predominantly on the exterior surface of the brush since salt adsorption is not accompanied by a size increase as measured by dynamic light scattering. The study adds new insights into our understanding of the behavior of NPs bearing salt-responsive polyelectrolyte brushes with adaptive swelling thresholds that can ultimately modulate surface properties.

2.
Langmuir ; 39(8): 3118-3130, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36791471

RESUMO

Particle-stabilized emulsions (Pickering emulsions) have recently attracted significant attention in scientific studies and for technological applications. The interest stems from the ease of directly assembling the particles at interfaces and modulating the interfacial properties. In this paper, we demonstrate the formation of stable, practical emulsions leveraging the assembly of ionizable, pH responsive silica nanoparticles, surface-functionalized by a mixture of silanes containing amine/ammonium groups, which renders them positively charged. Using pH as the trigger, the assembly and the behavior of the emulsion are controlled by modulating the charges of the functional groups of the nanoparticle and the oil (crude oil). In addition to their tunable charge, the particular combination of silane coupling agents leads to stable particle dispersions, which is critical for practical applications. Atomic force microscopy and interfacial tension (IFT) measurements are used to monitor the assembly, which is controlled by both the electrostatic interactions between the particles and oil and the interparticle interactions, both of which are modulated by pH. Under acidic conditions, when the surfaces of the oil and the nanoparticles (NPs) are positively charged, the NPs are not attracted at the interface and there is no significant reduction in the IFT. In contrast, under basic conditions in which the oil carries a high negative charge and the amine groups on the silica are deprotonated while still positively charged because of the ammonium groups, the NPs assemble at the interface in a closely packed configuration yielding a jammed state with a high dilatational modulus. As a result, two oil droplets do not coalesce even when pushed against each other and the emulsion stability improves significantly. The study provides new insights into the directed assembly of nanoparticles at fluid interfaces relevant to several applications, including environmental remediation, catalysis, drug delivery, food technology, and oil recovery.

3.
ACS Appl Mater Interfaces ; 15(4): 6113-6122, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36692039

RESUMO

A targeted and controlled delivery of molecular surfactants at oil-water interfaces using the directed assembly of nanoparticles, NPs, is reported. The mechanism of NP assembly at the interface and the release of molecular surfactants is followed by laser scanning confocal microscopy and surface force spectroscopy. The assembly of positively charged polystyrene NPs at the oil-water interface was facilitated by the introduction of carboxylic acid groups in the oil phase (e.g., by adding 1 wt % stearic acid to hexadecane to produce a model oil). The presence of positively charged NPs consistently lowers the stiffness of the water-oil interface. The effect is lessened, when the NPs are present in a solution of NaCl or deionized water at pH 2, consistent with a less dense monolayer of NPs at the interface in the last two systems. In addition, the NPs reduce the interfacial adhesion (i.e., the "stickiness" of the interface or, put differently, the pull-off force experienced by the atomic force microscopy (AFM) tip during retraction). After the assembly, the NPs can release a previously loaded cargo of surfactant molecules, which then facilitate the formation of a much finer oil-water emulsion. As a proof of concept, we demonstrate the release of octadecyl amine, ODA, that has been incorporated into the NPs prior to the assembly. The release of ODA causes the NPs to detach from the interface altering the interfacial properties and leads to finer oil droplets. This approach can be exploited in applications in several fields ranging from pharmaceutical and cosmetics to hydrocarbon recovery and oil-spill remediation, where a targeted and controlled release of surfactants is wanted.

4.
Nanomaterials (Basel) ; 12(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35808131

RESUMO

In this work, we demonstrated the ability of the cyanobacterium Pseudanabaena/Limnothrix sp. to produce ultra-small silver nanoparticlesin the forms of metallic silver (Ag0) and silver oxides (AgxOy) via a facile green synthetic process. The biological compounds in the cyanobacterial cellular extract acted both as reducing agents for silver ions and functional stabilizing agents for the silver nanoparticles. Furthermore, the antibacterical activity of the as-synthesized nanoparticles against Gram-negative Escherichia coli and Gram-positive Corynebacterium glutamicum bacterial cells was evaluated. The experimental results revealed a remarkable bactericidal activity of the nanoparticles that was both time-dependent and dose-dependent. In addition to their excellent bactericidal properties, the developed nanoparticles can be used as nanosupports in various environmental, biological, and medical applications.

5.
Langmuir ; 38(1): 62-71, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34958229

RESUMO

Characterization of complex oil emulsions is critical yet challenging both in science and in many industrial applications. Here we demonstrate for the first time the use of flow cytometry as a fast method for characterizing complex, polydisperse oil-water emulsions. Owing to our interest in understanding how the presence of specific ions might affect the properties of oil-water emulsions including size, polydispersity, and complexity, we present a systematic study of oil emulsions in deionized water and various brines of different ionic strength. Forward scatter (FSC) and side scatter (SSC) intensities associated with detailed statistics were judiciously combined to provide a better understanding of these complex systems. We find that the type and concentration profiles of ions around the oil droplets affect significantly the properties of the emulsion. Weakly hydrated cations NH4+ and Ca2+ appear to be more effective in screening the charge of oil droplets compared to the monovalent Na+ and divalent Mg2+ ions, respectively. As a result, coalescence and formation of larger droplets are seen in the case of NH4Cl and CaCl2 compared to NaCl and MgCl2, respectively. In addition, weakly hydrated anions such as Cl- can come closer to the oil surface and, thus, decrease the effective screening that the Na+ ions provide as compared to SO42- ions, which leads to more stable emulsions in NaCl compared to Na2SO4. In addition to these specific findings, the work demonstrates the utility of the technique as a new tool for characterizing oil emulsions in a wide spectrum of fields ranging from food to oil and gas applications.


Assuntos
Água , Emulsões , Citometria de Fluxo , Concentração Osmolar , Tamanho da Partícula
6.
Nanomaterials (Basel) ; 11(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670153

RESUMO

In this work, hybrid zinc oxide-iron oxide (ZnOFe) magnetic nanoparticles were synthesized employing Olea europaea leaf aqueous extract as a reducing/chelating and capping medium. The resulting magnetic nanoparticles were characterized by basic spectroscopic and microscopic techniques, namely, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier-transform infrared (FTIR) and atomic force microscopy (AFM), exhibiting a spherical shape, average size of 15-17 nm, and a functionalized surface. Lipase from Thermomyces lanuginosus (TLL) was efficiently immobilized on the surface of ZnOFe nanoparticles through physical absorption. The activity of immobilized lipase was found to directly depend on the enzyme to support the mass ratio, and also demonstrated improved pH and temperature activity range compared to free lipase. Furthermore, the novel magnetic nanobiocatalyst (ZnOFe-TLL) was applied to the preparation of hydroxytyrosyl fatty acid esters, including derivatives with omega-3 fatty acids, in non-aqueous media. Conversion yields up to 90% were observed in non-polar solvents, including hydrophobic ionic liquids. Different factors affecting the biocatalyst performance were studied. ZnOFe-TLL was reutilized for eight subsequent cycles, exhibiting 90% remaining esterification activity (720 h of total operation at 50 °C). The green synthesized magnetic nanoparticles, reported here for the first time, are excellent candidates as nanosupports for the immobilization of enzymes with industrial interest, giving rise to nanobiocatalysts with elevated features.

7.
Nanomaterials (Basel) ; 9(6)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142000

RESUMO

In the present study, hybrid nanoflowers (HNFs) based on copper (II) or manganese (II) ions were prepared by a simple method and used as nanosupports for the development of effective nanobiocatalysts through the immobilization of lipase B from Pseudozyma antarctica. The hybrid nanobiocatalysts were characterized by various techniques including scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The effect of the addition of carbon-based nanomaterials, namely graphene oxide and carbon nanotubes, as well as magnetic nanoparticles such as maghemite, on the structure, catalytic activity, and operational stability of the hybrid nanobiocatalysts was also investigated. In all cases, the addition of nanomaterials during the preparation of HNFs increased the catalytic activity and the operational stability of the immobilized biocatalyst. Lipase-based magnetic nanoflowers were effectively applied for the synthesis of tyrosol esters in non-aqueous media, such as organic solvents, ionic liquids, and environmental friendly deep eutectic solvents. In such media, the immobilized lipase preserved almost 100% of its initial activity after eight successive catalytic cycles, indicating that these hybrid magnetic nanoflowers can be applied for the development of efficient nanobiocatalytic systems.

8.
J Am Chem Soc ; 139(30): 10232-10238, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27775320

RESUMO

Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic-inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA