Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 656: 122-130, 2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-37032581

RESUMO

Despite decades of development of treatments and the successful application of targeted therapies for multiple myeloma, clinical challenges remain for patients with relapsed/refractory disease. A drug designed for efficient delivery of an alkylating payload into tumor cells that yields a favorable therapeutic window can be an attractive choice. Herein we describe melphalan flufenamide (melflufen), a drug with a peptide carrier component conjugated to an alkylating payload, and its cellular metabolism. We further underline the fundamental role of enzymatic hydrolysis in the rapid and robust accumulation of alkylating metabolites in cancer cells and their importance for downstream effects. The formed alkylating metabolites were shown to cause DNA damage, both on purified DNA and on chromatin in cells, with both nuclear and mitochondrial DNA affected in the latter. Furthermore, the rapid intracellular enrichment of alkylating metabolites is shown to be essential for the rapid kinetics of the downstream intracellular effects such as DNA damage signaling and induction of apoptosis. To evaluate the importance of enzymatic hydrolysis for melflufen's efficacy, all four stereoisomers of the compound were studied in a systematic approach and shown to have a different pattern of metabolism. In comparison with melflufen, stereoisomers lacking intracellular accumulation of alkylating payloads showed cytotoxic activity only at significantly higher concentration, slower DNA damage kinetics, and different mechanisms of action to reach cellular apoptosis.


Assuntos
Melfalan , Mieloma Múltiplo , Humanos , Melfalan/efeitos adversos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Fenilalanina/farmacologia
2.
Bioorg Med Chem Lett ; 19(6): 1745-8, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19217286

RESUMO

Small molecule inhibitors of adipocyte fatty-acid binding protein (A-FABP) have gained renewed interest following the recent publication of pharmacologically beneficial effects of such inhibitors. Despite the potential utility of selective A-FABP inhibitors within the fields of metabolic disease, inflammation and atherosclerosis, there are few examples of useful A-FABP inhibitors in the public domain. Herein, we describe the optimization of N-benzyl-tetrahydrocarbazole derivatives through the use of co-crystal structure guided medicinal chemistry efforts. This led to the identification of a potent and selective class of A-FABP inhibitors as illustrated by N-benzyl-hexahydrocyclohepta[b]indole 30.


Assuntos
Adipócitos/efeitos dos fármacos , Ácidos Carboxílicos/química , Química Farmacêutica/métodos , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Animais , Sítios de Ligação , Cristalografia por Raios X/métodos , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Macrófagos/metabolismo , Camundongos , Modelos Químicos , Estrutura Molecular , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA