RESUMO
Objective: Managing flexor tendon injuries surgically remains challenging due to the ongoing debate over the most effective suture technique and materials. An optimal repair must be technically feasible while providing enough strength to allow for early active mobilization during the post-operative phase. This study aimed to assess the biomechanical properties of three modified Kessler repair techniques using two different suture materials: a conventional two-strand and a modified four-strand Kirchmayr-Kessler repair using 3-0 Prolene® (2s-KK-P and 4s-KK-P respectively), and a four-strand Kessler-Tsuge repair using 4-0 FiberLoop® (4s-KT-FL). Methods: Human flexor digitorum profundus (FDP) tendons were retrieved from Thiel-embalmed prosections. For each tendon, a full-thickness cross-sectional incision was created, and the ends were reattached using either a 2s-KK-P (n = 30), a 4s-KK-P (n = 30), or a 4s-KT-FL repair (n = 30). The repaired tendons were tested using either a quasi-static (n = 45) or cyclic testing protocol (n = 45). Maximum force (Fmax), 2 mm gap force (F2mm), and primary failure modes were recorded. Results: In both quasi-static and cyclic testing groups, tendons repaired using the 4s-KT-FL approach exhibited higher Fmax and F2mm values compared to the 2s-KK-P or 4s-KK-P repairs. Fmax was significantly higher with a 4s-KK-P versus 2s-KK-P repair, but there was no significant difference in F2mm. Suture pull-out was the main failure mode for the 4s-KT-FL repair, while suture breakage was the primary failure mode in 2s- and 4s-KK-P repairs. Conclusions: FDP tendons repaired using the 4s-KT-FL approach demonstrated superior biomechanical performance compared to 2s- and 4s-KK-P repairs, suggesting that the 4s-KT-FL tendon repair could potentially reduce the risk of gapping or re-rupture during early active mobilization.
RESUMO
Survey-based research is vital in education and social sciences, offering insights into human behaviors and perceptions. The prevalence of such studies in medical education has risen by 33% over the past decade. Despite this growth, the utility of survey findings depends on the study design quality and measure validity. Many manuscripts are rejected due to poor planning and lack of validity evidence. These guidelines aim to improve the rigor and reporting of survey-based research, ensuring credibility and reproducibility. They apply to various survey tools and evaluations, setting a standard for manuscript quality and informing the review process for Anatomical Science Education.
Assuntos
Anatomia , Humanos , Inquéritos e Questionários/estatística & dados numéricos , Anatomia/educação , Guias como Assunto , Projetos de Pesquisa/normas , Reprodutibilidade dos Testes , Educação Médica/normas , Educação Médica/métodosRESUMO
Systematic reviews and meta-analyses aggregate research findings across studies and populations, making them a valuable form of research evidence. Over the past decade, studies in medical education using these methods have increased by 630%. However, many manuscripts are not publication-ready due to inadequate planning and insufficient analyses. These guidelines aim to improve the clarity and comprehensiveness of reporting methodologies and outcomes, ensuring high quality and comparability. They align with existing standards like PRISMA, providing examples and best practices. Adhering to these guidelines is crucial for publication consideration in Anatomical Sciences Education.
Assuntos
Metanálise como Assunto , Revisões Sistemáticas como Assunto , Humanos , Anatomia/educação , Educação Médica/normas , Educação Médica/métodos , Guias como Assunto , Publicações Periódicas como Assunto/normas , Revisões Sistemáticas como Assunto/normasRESUMO
Regional anatomy teaching forms a cornerstone of undergraduate medical education. Owing to an increase in teaching and learning content throughout the medical curriculum in recent years, contact hours and overall course durations in anatomy are under review worldwide. This study aimed to assess whether shortening the course content duration impacts learning gain and the ability to identify anatomical structures correctly. Undergraduate medical students of the Johannes Kepler University Linz (JKU; n = 310) and at the Medical University of Graz (MUG; n = 156) participating in regional anatomy courses were included. Whole body regional anatomy courses, including hands-on dissection and accompanying lectures, were delivered over one or three months. Course content and examination mode were kept consistent, while the duration of knowledge delivery was one or three months, respectively. Objective structured practical examinations (OSPE) were then carried out on prosections for the neck, thorax, and abdomen. 3-month course exposure resulted in significantly higher OSPE scores for the neck (49 vs. 37%), thorax (65 vs. 54%), and abdomen (65 vs. 45%), respectively. Further evaluation of the utility of different embalming types yielded higher 3-month scores in the neck and thorax regions with Thiel-embalmed tissues and thorax and abdomen regions in ethanol-glycerin-embalmed tissues. Course exposure over a more extended period, like three months, appears to be highly beneficial.
RESUMO
High energy pelvic injuries sustain significant mortality rates, due to acute exsanguination and severe associated injuries. Managing the hemodynamically unstable trauma patient with a bleeding pelvic fracture still forms a major challenge in acute trauma care. Various approaches have been applied through the last decades. At present the concept of Damage Control Resuscitation (DCR) is universally accepted and applied in major trauma centers internationally. DCR combines hemostatic blood transfusions to restore blood volume and physiologic stability, reduced crystalloid fluid administration, permissive hypotension, and immediate hemorrhage control by operative or angiographic means. Different detailed algorithms and orders of hemostatic procedures exist, without clear consensus or guidelines, depending on local traditions and institutional setups. Fracture reduction and immediate stabilization with a binder constitute the basis for angiography and embolization (AE) or pelvic packing (PP) in the hemodynamically unstable patient. AE is time consuming and may not be available 24/7, whereas PP offers a quick and technically easy procedure well suited for the patient in extremis. Resuscitative endovascular balloon occlusion of the aorta (REBOA) has also been described as a valuable adjunct in hemostatic non-responders, but merely constitute a bridge to surgical or angiographic hemostasis and its definitive role in DCR is not yet clearly established. A swift algorithmic approach to the hemodynamically unstable pelvic injury patient is required to achieve optimum results. The present paper summarizes the available literature on the acute management of the bleeding pelvic trauma patient, with emphasis on initial assessment and damage control resuscitation including surgical and angiographic hemostatic procedures. Furthermore, initial treatment of open fractures and associated injuries to the nervous and genitourinary system is outlined.
RESUMO
Background: Niemann-Pick disease type C1 (NPC1, MIM 257220) is a heritable lysosomal storage disease characterized by a progressive neurological degeneration that causes disability and premature death. A murine model of Npc1-/- displays a rapidly progressing form of Npc1 disease, which is characterized by weight loss, ataxia, and increased cholesterol storage. Npc1-/- mice receiving a combined therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-ß-cyclodextrin (HPßCD) showed prevention of Purkinje cell loss, improved motor function and reduced intracellular lipid storage. Although therapy of Npc1-/- mice with COMBI, MIGLU or HPßCD resulted in the prevention of body weight loss, reduced total brain weight was not positively influenced. Methods: In order to evaluate alterations of different brain areas caused by pharmacotherapy, fresh volumes (volumes calculated from the volumes determined from paraffin embedded brain slices) of various brain structures in sham- and drug-treated wild type and mutant mice were measured using stereological methods. Results: In the wild type mice, the volumes of investigated brain areas were not significantly altered by either therapy. Compared with the respective wild types, fresh volumes of specific brain areas, which were significantly reduced in sham-treated Npc1-/- mice, partly increased after the pharmacotherapies in all treatment strategies; most pronounced differences were found in the CA1 area of the hippocampus and in olfactory structures. Discussion: Volumes of brain areas of Npc1-/- mice were not specifically changed in terms of functionality after administering COMBI, MIGLU, or HPßCD. Measurements of fresh volumes of brain areas in Npc1-/- mice could monitor region-specific changes and response to drug treatment that correlated, in part, with behavioral improvements in this mouse model.
RESUMO
Bile acids help facilitate intestinal lipid absorption and have endocrine activity in glucose, lipid and bone metabolism. Obesity and exercise influence bile acid metabolism and have opposite effects in bone. This study investigates if regular exercise helps mitigate the adverse effects of obesity on bone, potentially by reversing alterations in bile acid metabolism. Four-month-old female Sprague Dawley rats either received a high-fat diet (HFD) or a chow-based standard diet (lean controls). During the 10-month study period, half of the animals performed 30 min of running at moderate speed on five consecutive days followed by two days of rest. The other half was kept inactive (inactive controls). At the study's end, bone quality was assessed by microcomputed tomography and biomechanical testing. Bile acids were measured in serum and stool. HFD feeding was related to reduced trabecular (-33%, p = 1.14 × 10-7) and cortical (-21%, p = 2.9 × 10-8) bone mass and lowered femoral stiffness (12-41%, p = 0.005). Furthermore, the HFD decreased total bile acids in serum (-37%, p = 1.0 × 10-6) but increased bile acids in stool (+2-fold, p = 7.3 × 10-9). These quantitative effects were accompanied by changes in the relative abundance of individual bile acids. The concentration of serum bile acids correlated positively with all cortical bone parameters (r = 0.593-0.708), whilst stool levels showed inverse correlations at the cortical (r = -0.651--0.805) and trabecular level (r = -0.656--0.750). Exercise improved some trabecular and cortical bone quality parameters (+11-31%, p = 0.043 to 0.001) in lean controls but failed to revert the bone loss related to the HFD. Similarly, changes in bile acid metabolism were not mitigated by exercise. Prolonged HFD consumption induced quantitative and qualitative alterations in bile acid metabolism, accompanied by bone loss. Tight correlations between bile acids and structural indices of bone quality support further functional analyses on the potential role of bile acids in bone metabolism. Regular moderate exercise improved trabecular and cortical bone quality in lean controls but failed in mitigating the effects related to the HFD in bone and bile acid metabolism.
Assuntos
Ácidos e Sais Biliares , Osso e Ossos , Dieta Hiperlipídica , Condicionamento Físico Animal , Ratos Sprague-Dawley , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Feminino , Dieta Hiperlipídica/efeitos adversos , Condicionamento Físico Animal/fisiologia , Ratos , Osso e Ossos/metabolismo , Densidade Óssea , Microtomografia por Raio-X , Fezes/química , Obesidade/metabolismoRESUMO
Background and Objectives: Facial vascular anatomy plays a pivotal role in both physiological context and in surgical intervention. While data exist on the individual course of the facial artery and vein, to date, the spatial relationship of the vasculature has been ill studied. The aim of this study was to assess the course of facial arteries, veins and branches one relative to another. Materials and Methods: In a total of 90 halved viscerocrania, the facial vessels were injected with colored latex. Dissection was carried out, the relation of the facial vessels was studied, and the distance at the lower margin of the mandible was measured. Furthermore, branches including the labial and angular vessels were assessed. Results: At the base of the mandible, the facial artery was located anterior to the facial vein in all cases at a mean distance of 6.2 mm (range 0-15 mm), with three cases of both vessels adjacent. An angular vein was present in all cases, while an angular artery was only present in 34.4% of cases. Conclusions: The main trunk of the facial artery and vein yields a rather independent course, with the facial artery always located anterior to the vein, while their branches, especially the labial vessels, demonstrate a closer relationship.
Assuntos
Cadáver , Face , Humanos , Face/irrigação sanguínea , Face/anatomia & histologia , Masculino , Feminino , Artérias/anatomia & histologia , Veias/anatomia & histologia , Mandíbula/anatomia & histologia , Mandíbula/irrigação sanguíneaRESUMO
Material properties of soft-tissue samples are often derived through uniaxial tensile testing. For engineering materials, testing parameters (e.g., sample geometries and clamping conditions) are described by international standards; for biological tissues, such standards do not exist. To investigate what testing parameters have been reported for tensile testing of human soft-tissue samples, a systematic review of the literature was performed using PRISMA guidelines. Soft tissues are described as anisotropic and/or hyperelastic. Thus, we explored how the retrieved parameters compared against standards for engineering materials of similar characteristics. All research articles published in English, with an Abstract, and before 1 January 2023 were retrieved from databases of PubMed, Web of Science, and BASE. After screening of articles based on search terms and exclusion criteria, a total 1,096 articles were assessed for eligibility, from which 361 studies were retrieved and included in this review. We found that a non-tapered shape is most common (209 of 361), followed by a tapered sample shape (92 of 361). However, clamping conditions varied and were underreported (156 of 361). As a preliminary attempt to explore how the retrieved parameters might influence the stress distribution under tensile loading, a pilot study was performed using finite element analysis (FEA) and constitutive modeling for a clamped sample of little or no fiber dispersion. The preliminary FE simulation results might suggest the hypothesis that different sample geometries could have a profound influence on the stress-distribution under tensile loading. However, no conclusions can be drawn from these simulations, and future studies should involve exploring different sample geometries under different computational models and sample parameters (such as fiber dispersion and clamping effects). Taken together, reporting and choice of testing parameters remain as challenges, and as such, recommendations towards standard reporting of uniaxial tensile testing parameters for human soft tissues are proposed.
RESUMO
Histological terminology of the female genital organs is currently a part of the internationally accepted nomenclature Terminologia Histologica (TH), the latest edition of which dates back to 2008. Many new discoveries have been documented within 16 years since then, and many discrepancies have been found. This paper aims to revise the terminology from clinical and educational perspectives comprehensively. The authors thoroughly searched the current edition of "Terminologia Histologica: International Terms for Human Cytology and Histology," focusing on missing and controversial terms in the chapter Female genital system. The authors identified six controversial and ambiguous terms and four missing important histological terms. The authors also discussed the addition of less used eponymic terms in the histological description of female genital organs like Hamperl cells, Popescu cells, Kroemer lacunae, Balbiani bodies, Call-Exner bodies, membrane of Slavianski, nabothian cysts, or anogenital sweat glands of van der Putte. We expect the second and revised edition of the TH to be published soon and hope that the Federative International Program on Anatomical Terminology will approve and incorporate all these propositions and suggestions. We also strongly recommend using the official internationally accepted Latin and English histological nomenclature-the TH, either in oral or written form, both in theoretical and clinical medicine.
Assuntos
Genitália Feminina , Terminologia como Assunto , Humanos , Feminino , Genitália Feminina/anatomia & histologia , AnatomiaRESUMO
INTRODUCTION: This systematic review aims to identify previously used techniques in biomechanics to assess pelvic instability following pelvic injury, focusing on external fixation constructs. METHODS: A systematic literature search was conducted to include biomechanical studies and to exclude clinical trials. RESULTS: Of an initial 4666 studies found, 38 met the inclusion criteria. 84% of the included studies were retrieved from PubMed, Scopus, and Web of Science. The studies analysed 106 postmortem specimens, 154 synthetic bones, and 103 computational models. Most specimens were male (97% synthetic, 70% postmortem specimens). Both the type of injury and the classification system employed varied across studies. About 82% of the injuries assessed were of type C. Two different fixators were tested for FFPII and type A injury, five for type B injury, and fifteen for type C injury. Large variability was observed for external fixation constructs concerning device type and configuration, pin size, and geometry. Biomechanical studies deployed various methods to assess injury displacement, deformation, stiffness, and motion. Thereby, loading protocols differed and inconsistent definitions of failure were determined. Measurement techniques applied in biomechanical test setups included strain gauges, force transducers, and motion tracking techniques. DISCUSSION AND CONCLUSION: An ideal fixation method should be safe, stable, non-obstructive, and have low complication rates. Although biomechanical testing should ensure that the load applied during testing is representative of a physiological load, a high degree of variability was found in the current literature in both the loading and measurement equipment. The lack of a standardised test design for fixation constructs in pelvic injuries across the studies challenges comparisons between them. When interpreting the results of biomechanical studies, it seems crucial to consider the limitations in cross-study comparability, with implications on their applicability to the clinical setting.
Assuntos
Fraturas Ósseas , Ossos Pélvicos , Humanos , Fenômenos Biomecânicos , Fixadores Externos , Fixação de Fratura/métodos , Ossos Pélvicos/cirurgiaRESUMO
Biomechanical simulation of the human thorax, e.g. for 3D-printed rib implant optimisation, requires an accurate knowledge of the associated articulation and tissue stiffness. The present study is focusing on determining the stiffness of the costo-vertebral articulations. Specimens of rib segments including the adjacent thoracic vertebrae and ligaments were obtained from two human post-mortem bodies at four different rib levels. The rib samples were loaded with a tensile force in the local longitudinal, sagittal and transverse direction and the resulting displacement was continuously measured. The moment-angle response of the rib articulations was also determined by applying a load at the rib end in the cranial - caudal direction and measuring the resulting displacement. The torsional load response of the costo-vertebral articulations at an applied moment between -0.1 Nm and 0.1 Nm corresponded to a median range of motion of 13.2° (6.4° to 20.9°). An almost uniform stiffness was measured in all tensile loading directions. The median displacement at the defined force of 28 N was 1.41 mm in the longitudinal, 1.55 mm in the sagittal, and 1.08 mm in the transverse direction. The measured moment-angle response of the costo-vertebral articulation is in line with the data from literature. On the contrary, larger displacements in longitudinal, sagittal and transverse directions were measured compared to the values found in literature.
Assuntos
Costelas , Tórax , Humanos , Costelas/fisiologia , Articulações/fisiologia , Vértebras Torácicas , Próteses e Implantes , Fenômenos BiomecânicosRESUMO
BACKGROUND: The human sacroiliac joint (SIJ) in vivo is exposed to compressive and shearing stress environment, given the joint lines are almost parallel to the direction of gravity. The SIJ supports efficient bipedal walking. Unexpected or unphysiological, repeated impacts are believed to cause joint misalignment and result in SIJ pain. In the anterior compartment of the SIJ being synovial, the articular surface presents fine irregularities, potentially restricting the motion of the joints. OBJECTIVE: To clarify how the SIJ articular surface affects the resistance of the motion under physiological loading. METHODS: SIJ surface models were created based on computed tomography data of three patients and subsequently 3D printed. Shear resistance was measured in four directions and three combined positions using a customized setup. In addition, repositionability of SIJs was investigated by unloading a shear force. RESULTS: Shear resistance of the SIJ was the highest in the inferior direction. It changed depending on the direction of the shear and the alignment position of the articular surface. CONCLUSION: SIJ articular surface morphology is likely designed to accommodate upright bipedal walking. Joint misalignment may in consequence increase the risk of subluxation.
Assuntos
Articulação Sacroilíaca , Posição Ortostática , Humanos , Articulação Sacroilíaca/diagnóstico por imagem , Articulação Sacroilíaca/anatomia & histologia , Articulação Sacroilíaca/fisiologia , Movimento (Física) , Estresse Mecânico , Amplitude de Movimento Articular/fisiologiaRESUMO
Stress urinary incontinence presents a condition not only found in female elderlies, but also in young athletes participating in high-impact sports such as volleyball or trampolining. Repeated jumps appear to be a predisposing factor. Yet the pathophysiology remains incompletely elucidated to date; especially with regard to the influence of the surrounding buttock tissues including gluteus maximus. The present study assessed the morpho-mechanical link between gluteus maximus and the pelvic floor female bodies. 25 pelves obtained from Thiel embalmed females were studied in a supine position. Strands of tissues connecting gluteus maximus with the pelvic floor obtained from 20 sides were assessed mechanically. Plastinates were evaluated to verify the dissection findings. In total, 49 hemipelves were included for data acquisition. The fascia of gluteus maximus yielded connections to the subcutaneous tissues, the fascia of the external anal sphincter and that of obturator internus and to the fascia of the urogenital diaphragm. The connection between gluteus maximus and the urogenital diaphragm withstood an average force of 23.6 ± 17.3 N. Cramér φ analyses demonstrated that the connections of the fasciae connecting gluteus maximus with its surroundings were consistent in the horizontal and sagittal planes, respectively. In conclusion, gluteus maximus is morphologically densely linked to the pelvic floor via strands of connective tissues investing the adjacent muscles. Though gluteus maximus has also been reported to facilitate urinary continence, the here presented morpho-mechanical link suggests that it may also have the potential to contribute to urinary stress incontinence. Future research combining clinical imaging with in-situ testing may help substantiate the potential influence from a clinical perspective.
Assuntos
Músculo Esquelético , Diafragma da Pelve , Humanos , Feminino , Nádegas , Músculo Esquelético/fisiologia , Coxa da Perna , FásciaRESUMO
Fat is physiologically embedded within the interosseous ligaments in the posterior part of the sacroiliac joint (PSIJ). This composite of fat and ligaments is hypothesized to serve a shock-absorbing, stabilizing function for the sacroiliac joint and the lumbopelvic transition region. Using a novel Python-based software (VolSEQ), total PSIJ volume and fat volume were computed semi-automatically. Differences within the cohort and the viability of the program for the quantification of fat in routine computed tomography (CT) scans were assessed. In 37 CT scans of heathy individuals, the PSIJ were first manually segmented as a region of interest in OSIRIX. Within VolSEQ, 'fat' Hounsfield units (- 150 to - 50 HU) are selected and the DICOM file of the patient scan and associated region of interest file from OSIRIX were imported and the pixel sub volumes were then automatically computed. Volume comparisons were made between sexes, sides and ages (≤ 30, 31-64 and > 65 years). PSIJ volumes in both software (VolSeq vs. OSIRIX) were non-different (both 9.7 ± 2.8cm3; p = 0.9). Total PSIJ volume (p = 0.3) and fat volume (p = 0.7) between sexes were non-different. A significant difference in total PSIJ volume between sexes (p < 0.01) but not in fat volume (p = 0.3) was found only in the ≥ 65 years cohort. Fat volume within the PSIJ remains unchanged throughout life. PSIJ volume is sex-dependent after 65 years. VolSEQ is a viable and user-friendly method for sub-volume quantification of tissues in CT.
Assuntos
Articulação Sacroilíaca , Tomografia Computadorizada por Raios X , Humanos , Articulação Sacroilíaca/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Software , Tecido AdiposoRESUMO
The human dura mater is known to impact vastly traumatic brain injury mechanopathology. In spite of this involvement, dura mater is typically neglected in computational and physical human head models. The lack of location-dependent microstructural and related mechanical data of dura mater may be considered a rationale behind this simplification. The anisotropic nature of dura mater under various loading conditions so far remains unelucidated. Furthermore, principal collagen fiber orientation is yet to be quantified for a morpho-mechanically-informed material model on the dura mater. This study aims to assess how location-dependent mechanical anisotropy is linked to principal collagen fiber orientation. Uniaxial extension tests were performed in a heated tissue bath for 60 samples from six individuals and correlated to the three-dimensional collagen structure in four individuals using second-harmonic generation (SHG) imaging. Failure stress and stretch at failure, elastic modulus, and a microstructurally motivated material model were integrated to examine local differences in dura mater morpho-mechanics. The quantitative observation of collagen fiber orientation and dispersion confirmed that collagen is highly aligned in the human dura mater and that both fiber orientation and dispersion differ depending on the location investigated. This observation provides a possible explanation for the previously observed isotropic mechanical behavior, as the main collagen fiber direction is not oriented along the anterior-posterior or medial-lateral direction at most of the mapped locations. Additionally, these site-dependent structural properties have implications for the mechanical load response and therefore potentially for the regional functions dura mater has to fulfill. The here chosen non-symmetrical fiber dispersion material model fits the data well and provides a comprehensive parameter base for further studies and future finite element models. STATEMENT OF SIGNIFICANCE: The human dura mater greatly affects traumatic brain injury mechanisms, but it is often ignored in computational and physical head models. This is because there is a lack of detailed microstructural and mechanical data specific to the dura mater. Its anisotropic nature and collagen fiber orientation have not been fully understood, hindering the development of an accurate material model. Hence, this study combines morphological data on collagen fiber orientation and dispersion at multiple locations of human cranial dura mater, and links microstructure to location-specific load-displacement behavior. It provides microstructurally informed mechanical information towards realistic head models for predicting location-dependent tissue behavior and failure for assessing brain injury and graft material development.
RESUMO
OBJECTIVE: Capsular repair aims to minimize damage to the hip joint capsular complex (HJCC) and subsequent dislocation risk following total hip arthroplasty (THA). Numerous explanations for its success have been advocated, including neuromuscular feedback loops originating from within the intact HJCC. This research investigates the hypothesis that the HJCC contributes to hip joint stability by analyzing HJCC innervation. METHOD: Twenty-nine samples from the anterior, medial, and lateral aspects of the midportion HJCC of 29 individuals were investigated stereologically and immunohistochemically to identify encapsulated mechanoreceptors according to a modified Freeman and Wyke classification, totaling 11,745 sections. Consecutive slices were observed to determine the nerve course within the HJCC. RESULTS: Few encapsulated mechanoreceptors were found in the HJCC subregions and overlying tissues across the cohort studied. Of regions studied, no significant regional differences in the density of mechanoreceptors were found. No significant difference in mechanoreceptor density was found between sides (left, 10.2×10-4/mm3, 4.0×10-4 - 19.0×10-4/mm3; right 12.9×10-4/mm3, 5.0×10-4 - 22.0×10-4/mm3; mean, 95% confidence intervals) sexes (female 10.4×10-4/mm3, 4.0×10-4 - 18.0×10-4/mm3; male 11.6×10-4/mm3, 5.0×10-4 - 20.0×10-4/mm3; mean, 95% confidence intervals), nor in correlation with age demographics. Myelinated nerves coursed consistently within the HJCC in various orientations. CONCLUSION: Sparse mechanoreceptor density suggests that the HJCC contributes to a limited extent to hip joint stabilization. HJCC nerve terminals may potentially contribute to neuromuscular feedback loops with associated muscles to mediate joint stability in tandem with the active and passive components of the joint.
Assuntos
Artroplastia de Quadril , Luxação do Quadril , Luxações Articulares , Humanos , Masculino , Feminino , Articulação do Quadril , Luxação do Quadril/cirurgia , Cápsula ArticularRESUMO
Background and Objectives: The facial vein is the main collector of venous blood from the face. It plays an important role in physiological as well as pathological context. However, to date, only limited data on the course and tributaries of the facial vein are present in contemporary literature. The aim of this study was to provide detail on the course and the tributaries of the facial vein. Materials and Methods: In 96 sides of 53 body donors, latex was injected into the facial vein. Dissection was carried out and the facial vein and its tributaries (angular vein, ophthalmic vein, nasal veins, labial veins, palpebral veins, buccal and masseteric veins) were assessed. Results: The facial vein presented a textbook-like course in all cases and crossed the margin of the mandible anterior to the masseter in 6.8% of cases, while being located deep to the zygomaticus major muscle in all cases and deep to the zygomaticus minor in 94.6% of cases. Conclusions: This work offers detailed information on the course of the facial vein in relation to neighboring structures, which shows a relatively consistent pattern, as well as on its tributaries, which show a high variability.
Assuntos
Face , Veias Jugulares , Humanos , Mandíbula , Músculo Masseter , NarizRESUMO
INTRODUCTION: The aim of this review was to summarize the available evidence for biomechanical stability following surgical DOB reconstruction, and to determine whether distal radioulnar joint (DRUJ) stability with a reconstructed DOB was similar to the native intact condition or that after the Adams procedure. MATERIAL AND METHODS: A systematic literature search according to the PRISMA guidelines was performed using the databases PubMed and Embase. The following search algorithm was used: ("DOB" OR "Distal Oblique Bundle") AND "Reconstruction". Biomechanical or human cadaveric studies that measured stability of the DRUJ after reconstruction of the DOB were included. RESULTS: Four articles were included in the final analysis. DOB incidence was reported to be between 50% and 70%. Two studies observed no differences between the intact situation and the reconstructed DOB, respectively the Adams procedure. A further author group found no signs of major instability after the Adams reconstruction or after DOB reconstruction, except for decreased stability during supination in the DOB sample. In another study, similar results could be shown for the Adams and DOB reconstruction groups; however, the DOB sample showed decreased dorsal translation of the radius during forearm supination. CONCLUSION: In conclusion, DOB reconstruction was proven to stabilize the DRUJ adequately. Moreover, the reconstructed DOB showed the same stability as the native DOB, except for one study, in which stability following reconstruction was reduced during supination. No significant difference between the DOB and the Adams reconstruction could be observed.
Assuntos
Instabilidade Articular , Humanos , Instabilidade Articular/cirurgia , Rádio (Anatomia) , Articulação do Punho/cirurgia , Extremidade Superior , Fenômenos Biomecânicos , Cadáver , UlnaRESUMO
Biomechanical experiments help link tissue morphology with load-deformation characteristics. A tissue-dependent minimum sample number is indispensable to obtain accurate material properties. Stress-strain properties were retrieved from human dura mater and scalp skin, exemplifying two distinct soft tissues. Minimum sample sizes necessary for a stable estimation of material properties were obtained in a simulation study. One-thousand random samples were sequentially drawn for calculating the point at which a majority of the estimators settled within a corridor of stability at given tolerance levels around a 'complete' reference for the mean, median and coefficient of variation. Stable estimations of means and medians can be achieved below sample sizes of 30 at a ± 20%-tolerance within 80%-conformity for scalp skin and dura. Lower tolerance levels or higher conformity dramatically increase the required sample size. Conformity was barely ever reached for the coefficient of variation. The parameter type appears decisive for achieving conformity. STATEMENT OF SIGNIFICANCE: Biomechanical trials utilizing human tissues are needed to obtain material properties for surgical repair, tissue engineering and modeling purposes. Linking tissue mechanics with morphology helps elucidate form-function relationships, the 'morpho-mechanical link'. For material properties to be accurate, it is vital to examine a minimum number of samples. This number may vary between tissues, and the effects of intrinsic tissue characteristics on data accuracy are unclear to date. This study used data obtained from human dura and skin to compute minimum sample sizes required for estimating material properties at a stable level. It was shown that stable estimations are possible at a ± 20%-tolerance within 80%-conformity below sample sizes of 30. Higher accuracy warrants much higher sample sizes for most material properties.