Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Chemosphere ; 362: 142558, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851513

RESUMO

The contamination of water bodies by synthetic organic compounds coupled with climate change and the growing demand for water supply calls for new approaches to water management and treatment. To tackle the decontamination issue, the activation of peroxymonosulfate (PMS) using copper magnetic ferrite (CuMF) nanoparticles prepared under distinct synthesis conditions was assessed to oxidize imidacloprid (IMD) insecticide. After optimization of some operational variables, such as CuMF load (62.5-250 mg L-1), PMS concentration (250-1000 µM), and solution pH (3-10), IMD was completely oxidized in 2 h without interferences from leached metal ions. Such performance was also achieved when using tap water but was inhibited by a simulated municipal wastewater due to scavenging effects promoted by inorganic and organic species. Although there was evidence of the presence of sulfate radicals and singlet oxygen oxidizing species, only four intermediate compounds were detected by liquid chromatography coupled to mass spectrometry analysis, mainly due to hydroxyl addition reactions. Concerning the changes in surface properties of CuMF after use, no morphological or structural changes were observed except a small increase in the charge transfer resistance. Based on the changes of terminal surface groups, PMS activation occurred on Fe sites.

2.
Materials (Basel) ; 17(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38673250

RESUMO

This study investigates the profound impact of the ZrO2 inclusion volume on the characteristics of Al2O3/ZrO2 nanocomposites, particularly influencing the formation of calcium phosphates on the surface. This research, aimed at advancing tissue engineering, prepared nanocomposites with 5, 10, and 15 vol% ZrO2, subjecting them to chemical surface treatment for enhanced calcium phosphate deposition sites. Biomimetic coating with Sr-enriched simulated body fluid (SBF) further enhanced the bioactivity of nanocomposites. While the ZrO2 concentration heightened the oxygen availability on nanocomposite surfaces, the quantity of Sr-containing phosphate was comparatively less influenced than the formation of calcium phosphate phases. Notably, the coated nanocomposites exhibited a high cell viability and no toxicity, signifying their potential in bone tissue engineering. Overall, these findings contribute to the development of regenerative biomaterials, holding promise for enhancing bone regeneration therapies.

4.
Circ Cardiovasc Imaging ; 17(4): e016104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567518

RESUMO

BACKGROUND: The Fontan operation is a palliative technique for patients born with single ventricle heart disease. The superior vena cava (SVC), inferior vena cava (IVC), and hepatic veins are connected to the pulmonary arteries in a total cavopulmonary connection by an extracardiac conduit or a lateral tunnel connection. A balanced hepatic flow distribution (HFD) to both lungs is essential to prevent pulmonary arteriovenous malformations and cyanosis. HFD is highly dependent on the local hemodynamics. The effect of age-related changes in caval inflows on HFD was evaluated using cardiac magnetic resonance data and patient-specific computational fluid dynamics modeling. METHODS: SVC and IVC flow from 414 patients with Fontan were collected to establish a relationship between SVC:IVC flow ratio and age. Computational fluid dynamics modeling was performed in 60 (30 extracardiac and 30 lateral tunnel) patient models to quantify the HFD that corresponded to patient ages of 3, 8, and 15 years, respectively. RESULTS: SVC:IVC flow ratio inverted at ≈8 years of age, indicating a clear shift to lower body flow predominance. Our data showed that variation of HFD in response to age-related changes in caval inflows (SVC:IVC, 2, 1, and 0.5 corresponded to ages, 3, 8, and 15+, respectively) was not significant for extracardiac but statistically significant for lateral tunnel cohorts. For all 3 caval inflow ratios, a positive correlation existed between the IVC flow distribution to both the lungs and the HFD. However, as the SVC:IVC ratio changed from 2 to 0.5 (age, 3-15+) years, the correlation's strength decreased from 0.87 to 0.64, due to potential flow perturbation as IVC flow momentum increased. CONCLUSIONS: Our analysis provided quantitative insights into the impact of the changing caval inflows on Fontan's long-term HFD, highlighting the importance of SVC:IVC variations over time on Fontan's long-term hemodynamics. These findings broaden our understanding of Fontan hemodynamics and patient outcomes.


Assuntos
Técnica de Fontan , Cardiopatias Congênitas , Humanos , Pré-Escolar , Criança , Adolescente , Veia Cava Superior/diagnóstico por imagem , Veia Cava Superior/cirurgia , Veia Cava Superior/fisiologia , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Fígado/diagnóstico por imagem , Hemodinâmica/fisiologia , Veia Cava Inferior/diagnóstico por imagem , Veia Cava Inferior/cirurgia , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia
5.
World J Pediatr Congenit Heart Surg ; 15(3): 371-379, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38327093

RESUMO

BACKGROUND: Restoring adequate coaptation height is a key principle of mitral valve (MV) repair. This study aimed to evaluate the utility of fiberscope (FS) technology to assess MV coaptation height for intraoperative use. METHODS: Ex-vivo testing was performed on five adult porcine hearts. The left atrium (LA) was resected, and the left ventricle (LV) was pressurized retrograde to 27 ± 1mm Hg. An endoscope was inserted into the LV apex, centered under the MV orifice. An FS system (Milliscope II camera, LED light source, and 0.7 mm diameter × 15 cm long) 90° semirigid scope with 1.2 mm focal length) was mounted above the MV annulus in a custom alignment and measuring fixture. Three blinded measurements were taken at two locations on each MV, A2 and P2 segment, from the top of coaptation to the leaflet edge identified by the FS. Accurate positioning was verified using the LV endoscope. A control (metal rod of similar thickness) was used for comparison, with coaptation height recorded when the control was seen via the endoscope. RESULTS: Coaptation heights were similar for the control and FS methods across all hearts at A2 (11.6 ± 2.6 mm control vs 11.8 ± 2.2 mm FS) and P2 (13.3 ± 2.6 mm control vs 13.4 ± 2.9 mm FS) segments, with similar measurement variability (control SD 0.1-1.0 mm; FS SD 0.1-0.9 mm). One outlier was excluded from analysis (n = 19/20). The maximum absolute difference and percent error between measurement methods were less than 1.1 mm (median [IQR], 0.6 [0.3-0.9] mm) and less than 14% (4.1 [2.2-7.6]%). CONCLUSIONS: Utilization of a miniaturized FS enabled precise and accurate quantification of MV coaptation. This technique is promising for evaluating post-repair valve competence and coaptation height.


Assuntos
Valva Mitral , Animais , Suínos , Valva Mitral/cirurgia , Desenho de Equipamento , Modelos Animais de Doenças , Endoscopia/métodos , Procedimentos Cirúrgicos Cardíacos/métodos , Procedimentos Cirúrgicos Cardíacos/instrumentação , Insuficiência da Valva Mitral/cirurgia , Tecnologia de Fibra Óptica
6.
Chemosphere ; 352: 141278, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266880

RESUMO

Nanometric cobalt magnetic ferrite (CoFe2O4) synthesized by distinct methods was used for in situ chemical activation of peroxymonosulfate (PMS) under neutral conditions to oxidize imidacloprid (IMD) insecticide. The effect of CoFe2O4 load (0.125-1.0 g L-1) and PMS concentration (250-1000 µM) was investigated as well as the influence of phosphate buffer and Co(II) ions. PMS activation by Co(II) ions, including those leached from CoFe2O4 (>50 µg L-1), exhibited a strong influence on IMD oxidation and, apparently, without substantial contributions from the solid phase. Within the prepared solid materials (i.e., using sol-gel and co-precipitation methods), high oxidation rates (ca. 0.5 min-1) of IMD were attained in ultrapure water. Phosphate buffer had no significant influence on the IMD oxidation rate and level, however, its use and solution pH have shown to be important parameters, since higher PMS consumption was observed in the presence of buffered solutions at pH 7. IMD byproducts resulting from hydroxylation reactions and rupture of the imidazolidine ring were detected by mass spectrometry. At optimum conditions (0.125 g L-1 of CoFe2O4 and 500 µM of PMS), the CoFe2O4 nanoparticles exhibited an increase in the charge transfer resistance and an enhancement in the surface hydroxylation after PMS activation, which led to radical (HO● and SO4●-) and nonradical (1O2) species. The latter specie led to high levels of IMD oxidation, even in a complex water matrix, such as simulated municipal wastewater at the expense of one-order decrease in the IMD oxidation rate.


Assuntos
Cobalto , Compostos Férricos , Inseticidas , Neonicotinoides , Nitrocompostos , Peróxidos/química , Água , Fosfatos
7.
Cardiovasc Eng Technol ; 14(6): 827-839, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37973699

RESUMO

PURPOSE: Pulmonary valve (PV) monocusp reconstruction in transannular patch (TAP) right ventricular outflow tract (RVOT) repair for Tetralogy of Fallot has variable clinical outcomes across different surgical approaches. The study purpose was to systematically evaluate how monocusp leaflet design parameters affect valve function in-vitro. METHODS: A 3D-printed, disease-specific RVOT model was tested under three infant physiological conditions. Monocusps were sewn into models with the native main pulmonary artery (MPA) forming backwalls that constituted 40% and 50% of the reconstructed circumference for z-score zero PV annulus and MPA diameters (native PV z-score - 3.52 and - 2.99 for BSA 0.32m2). Various leaflet free edge lengths (FEL) (relative to backwall), positions (relative to PV STJ), and scallop depths were investigated across both models. Pressure gradient, regurgitation, and coaptation were analyzed with descriptive statistics and regression models. RESULTS: Increasing FEL beyond 100% of the MPA backwall decreased gradient but mildly increased regurgitation to a peak of 25%. Positioning the free edge 2 mm past the STJ mildly increased gradient for each FEL without significantly changing regurgitation compared to STJ placement. Scalloping leaflets trivially affected performance. Pre-folding leaflets improved mobility and slightly reduced gradient. CONCLUSIONS: Balancing gradient, regurgitation, and oversizing for growth, a set of leaflet designs have been selected for pre-clinical evaluation. Designs with leaflet widths 140-160% in the 40% backwall model (110-120% in the 50% backwall), positioned at or 2 mm past the STJ, demonstrated the best results. The next stage of ex-vivo testing will additionally consider native RVOT distensibility, native leaflet interactions, and TAP characteristics.


Assuntos
Insuficiência da Valva Pulmonar , Valva Pulmonar , Tetralogia de Fallot , Lactente , Humanos , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Ventrículos do Coração , Politetrafluoretileno , Resultado do Tratamento , Estudos Retrospectivos
8.
Eur J Cardiothorac Surg ; 64(5)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37897688

RESUMO

OBJECTIVES: Thick-patch pulmonary homograft, autologous pericardium and CardioCel Neo are common patch materials for aortic arch reconstruction. Insufficient data exist on sutured patch strength and limits of use. We evaluated failure strength of these materials to develop a failure prediction model for clinical guidance. METHODS: Patch failure strength was evaluated via sutured uniaxial and burst pressure testing. In sutured uniaxial testing, patches were sutured to aortic or Dacron tabs and pulled to failure. In burst pressure testing, patches were sewn into porcine aortas or Dacron grafts and pressurized to failure. Failure membrane tension was calculated. A prediction model of membrane tension versus vessel diameter was generated to guide clinical patch selection. RESULTS: Combining sutured uniaxial and burst pressure test data, pulmonary homograft failure strength {0.61 [interquartile range (IQR): 0.44, 0.78] N/mm, n = 21} was less than half that of autologous pericardium [2.22 (IQR: 1.65, 2.78) N/mm, n = 15] and CardioCel Neo [1.31 (IQR: 1.20, 1.42) N/mm, n = 20]. Pulmonary homograft burst pressure [245 (IQR: 202, 343) mmHg, n = 7] was significantly lower than autologous pericardium [863 (IQR: 802, 919) mmHg, n = 6] and CardioCel Neo [766 (IQR: 721, 833) mmHg, n = 6]. Our model predicts failure limits for each patch material and outlines safety margins for combinations of aortic diameter and pressure. CONCLUSIONS: Sutured failure strength of thick-patch pulmonary homograft was significantly lower than autologous pericardium and CardioCel Neo. Patient selection (predicted postoperative arch diameter and haemodynamics) and blood pressure management must be considered when choosing patch material for arch reconstruction. In older children and adolescents, autologous or bovine pericardium may be more suitable materials for aortic patch augmentation to minimize the risk of postoperative patch failure.


Assuntos
Aorta Torácica , Polietilenotereftalatos , Criança , Humanos , Animais , Bovinos , Suínos , Adolescente , Aorta Torácica/cirurgia , Aorta , Pressão Sanguínea , Hemodinâmica , Pericárdio/transplante , Estudos Retrospectivos
9.
Sci Adv ; 9(43): eadi5559, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37878705

RESUMO

In minimally invasive endovascular procedures, surgeons rely on catheters with low dexterity and high aspect ratios to reach an anatomical target. However, the environment inside the beating heart presents a combination of challenges unique to few anatomic locations, making it difficult for interventional tools to maneuver dexterously and apply substantial forces on an intracardiac target. We demonstrate a millimeter-scale soft robotic platform that can deploy and self-stabilize at the entrance to the heart, and guide existing interventional tools toward a target site. In two exemplar intracardiac procedures within the right atrium, the robotic platform provides enough dexterity to reach multiple anatomical targets, enough stability to maintain constant contact on motile targets, and enough mechanical leverage to generate newton-level forces. Because the device addresses ongoing challenges in minimally invasive intracardiac intervention, it may enable the further development of catheter-based interventions.


Assuntos
Robótica , Catéteres , Átrios do Coração , Desenho de Equipamento
10.
Artigo em Inglês | MEDLINE | ID: mdl-37555820

RESUMO

OBJECTIVES: Reconstruction of cardiovascular anatomy with patch material is integral to the repair of congenital heart disease. We present validation of a laser projection platform for the preparation of surgical patches as a proof-of-concept for intraoperative use in patient-specific planning of paediatric cardiac surgery reconstructions. METHODS: The MicroLASERGUIDE, a compact laser projection system that displays computer-aided designs onto 2D/3D surfaces, serves as an alternative to physical templates. A non-inferiority comparison of dimensional measurements was conducted between laser projection ('laser') and OZAKI AVNeo Template ('template') methods in creation of 51 (each group) size 13 valve leaflets from unfixed bovine pericardium. A digital version of the OZAKI AVNeo Template dimensions served as control. Feasibility testing was performed with other common patch materials (fixed bovine pericardium, PTFE and porcine main pulmonary artery as a substitute for pulmonary homograft) and sizes (13, 23) (n = 3 each group). RESULTS: Compared to control (height 21.5, length 21.0 mm), template height and length were smaller (height and length differences of -0.3 [-0.5 to 0.0] and -0.4 [-0.8 to -0.1] mm, P < 0.01 each); whereas, both laser height and length were relatively similar (height and length differences of height 0.0 [-0.2 to 0.2], P = 0.804, and 0.2 [-0.1 to 0.4] mm, P = 0.029). Template percent error for height and length was -1.5 (-2.3 to 0.0)% and -1.9 (-3.7 to -0.6)% vs 0.2 (-1.0 to 1.1)% and 1.0 (-0.5 to 1.8)% for the laser. Similar results were found with other materials and sizes. Overall, laser sample dimensions differed by a maximum of 5% (∼1 mm) from the control. CONCLUSIONS: The laser projection platform has demonstrated promise as an alternative methodology for the preparation of surgical patches for use in cardiac surgery. This technology has potential to revolutionize preoperative surgical planning for numerous congenital anomalies that require patient-specific patch-augmented repair.

11.
Cardiovasc Eng Technol ; 14(5): 640-654, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37580629

RESUMO

PURPOSE: Very high-risk, ductal-dependent or complex two-ventricle patients with associated comorbidities often require pulmonary blood flow restriction as bridge to a more definitive procedure, but current surgical options may not be well-tolerated. An evolving alternative utilizes a fenestrated Micro Vascular Plug (MVP) as a transcatheter, internal pulmonary artery band. In this study, we report a case series and an in-vitro evaluation of the MVP to elicit understanding of the challenges faced with device implantation. METHODS: Following single-center, retrospective review of eight patients who underwent device placement, an in-vitro flow study was conducted on MVP devices to assess impact of device and fenestration sizing on pulmonary blood flow. A mathematical model was developed to relate migration risk to vessel size. Results of the engineering analysis were compared to the clinical series for validation. RESULTS: At median follow-up of 8 months (range 1-15), survival was 63% (5/8), and 6 (75%) patients underwent subsequent target surgical intervention with relatively low mortality (1/6). Occluder-related challenges included migration (63%) and peri-device flow, which were evaluated in-vitro. The device demonstrated durability over normal and supraphysiologic conditions with minimal change in fenestration size. Smaller vessel size significantly increased pressure gradient due to reduced peri-device flow and smaller effective fenestration size. CONCLUSION: Device oversizing, with appropriate adjustment to fenestration size, may reduce migration risk and provide a clinically appropriate balance between resulting pressure gradient and Qp:Qs. Our results can guide the interventionalist in appropriately selecting the device and fenestrations based on patient-specific anatomy and desired post-implantation flow characteristics.


Assuntos
Cateterismo Cardíaco , Artéria Pulmonar , Recém-Nascido , Humanos , Artéria Pulmonar/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
12.
J Trauma Acute Care Surg ; 95(2): 186-190, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068024

RESUMO

BACKGROUND: Rapid triage of blunt agonal trauma patients is necessary to maximize survival, but autopsy is uncommon, slow, and rarely informs resuscitation guidelines. Postmortem computed tomography (PMCT) can serve as an adjunct to autopsy in guiding blunt agonal trauma resuscitation. METHODS: Retrospective cohort review of trauma decedents who died at or within 1 hour of arrival following blunt trauma and underwent noncontrasted PMCT. Primary outcome was the prevalence of mortal injury defined as potential exsanguination (e.g., cavitary injury, long bone and pelvic fractures), traumatic brain injury, and cervical spine injury. Secondary outcomes were potentially mortal injuries (e.g., pneumothorax) and misplacement airway devices. Patients were grouped by whether arrest occurred prehospital/in-hospital. Univariate analysis was used to identify differences in injury patterns including multiple-trauma injury patterns. RESULTS: Over a 9-year period, 80 decedents were included. Average age was 48.9 ± 21.7 years, 68% male, and an average ISS of 42.3 ± 16.3. The most common mechanism was motor vehicle accidents (67.5%) followed by pedestrian struck (15%). Of all decedents, 62 (77.5%) had traumatic arrest prehospital while 18 (22.5%) arrived with pulse. Between groups there were no significant differences in demographics including ISS. The most common mortal injuries were traumatic brain injury (40%), long bone fractures (25%), moderate/large hemoperitoneum (22.5%), and cervical spine injury (25%). Secondary outcomes included moderate/large pneumothorax (18.8%) and esophageal intubation rate of 5%. There were no significant differences in mortal or potentially mortal injuries, and no differences in multiple-trauma injury patterns. CONCLUSION: Fatal blunt injury patterns do not vary between prehospital and in-hospital arrest decedents. High rates of pneumothorax and endotracheal tube misplacement should prompt mandatory chest decompression and confirmation of tube placement in all blunt arrest patients. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level IV.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismo Múltiplo , Pneumotórax , Traumatismos Torácicos , Ferimentos não Penetrantes , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , Estudos Retrospectivos , Pneumotórax/diagnóstico por imagem , Pneumotórax/epidemiologia , Pneumotórax/etiologia , Ferimentos não Penetrantes/complicações , Traumatismo Múltiplo/complicações , Lesões Encefálicas Traumáticas/complicações , Tomografia , Traumatismos Torácicos/complicações
13.
Cardiovasc Eng Technol ; 14(2): 217-229, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36456745

RESUMO

PURPOSE: Tetralogy of Fallot and other conditions affecting the right ventricular outflow tract (RVOT) are common in pediatric patients, but there is a lack of quantitative comparison among techniques for repairing or replacing the pulmonary valve. The aim of this study was to develop a robust in vitro system for quantifying flow conditions after various RVOT interventions. METHODS: An infant-sized mock circulatory loop that includes a 3D-printed RVOT anatomical model was developed to evaluate flow conditions after different simulated surgical repairs. Physiologically correct flow and pressure were achieved with custom compliant tubing and a tunable flow restrictor. Pressure gradient, flow regurgitation, and coaptation height were measured for two monocusp leaflet designs after tuning the system with a 12 mm Hancock valved conduit. RESULTS: Measurements were repeatable across multiple samples of two different monocusp designs, with the wider leaflet in the 50% backwall model consistently exhibiting lower pressure gradient but higher regurgitation compared to the leaflet in the 40% backwall model. Coaptation height was measured via direct visualization with endoscopic cameras, revealing a shorter area of contact for the wider leaflet (3.3-4.0 mm) compared to the narrower one (4.3 mm). CONCLUSION: The 3D-printed RVOT anatomical model and in vitro pulmonary circulatory loop developed in this work provide a platform for planning and evaluating surgical interventions in the pediatric population. Measurements of regurgitation, pressure gradient, and coaptation provide a quantitative basis for comparison among different valve designs and positions.


Assuntos
Próteses Valvulares Cardíacas , Valva Pulmonar , Tetralogia de Fallot , Obstrução do Fluxo Ventricular Externo , Lactente , Criança , Humanos , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Obstrução do Fluxo Ventricular Externo/cirurgia , Valva Pulmonar/diagnóstico por imagem , Valva Pulmonar/cirurgia , Ventrículos do Coração , Circulação Pulmonar , Resultado do Tratamento
14.
J Patient Saf Risk Manag ; 28(5): 208-214, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38405201

RESUMO

Background: Medical errors occur frequently, yet they are often under-reported and strategies to increase the reporting of medical errors are lacking. In this work, we detail how a level 1 trauma center used a secure messaging application to track medical errors and enhance its quality improvement initiatives. Methods: We describe the formulation, implementation, evolution, and evaluation of a chatroom integrated into a secure texting system to identify performance improvement and patient safety (PIPS) concerns. For evaluation, we used descriptive statistics to examine PIPS reporting by the reporting method over time, the incidence of mortality and unplanned ICU readmissions tracked in the hospital trauma registry over the same, and time-to-loop closure over the study period to quantify the impact of the processes instituted by the PIPS team. We also categorized themes of reported events. Results: With the implementation of a PIPS chatroom, the number of events reported each month increased and texting became the predominant way for users to report trauma PIPS events. This increase in PIPS reporting did not appear to be accompanied by an increase in mortality and unplanned ICU readmissions. The PIPS team also improved the tracking and timely resolution of PIPS events and observed a decrease in time-to-loop closure with the implementation of the PIPS chatroom. Conclusions: The adoption of clinical texting as a way to report PIPS events was associated with increased reporting of such events and more timely resolution of concerns regarding patient safety and healthcare quality.

15.
Polymers (Basel) ; 14(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080551

RESUMO

Reinforcement steel extensively applied in civil construction is susceptible to corrosion due to the carbonation process in reinforced concrete and chloride ions diffusion. Epoxy-silica-based coatings are a promising option to guarantee the long-term stability of reinforced concrete structures. In this study, the influence of the proportion between the poly (bisphenol-A-co-epichlorhydrin) resin (DGEBA) and the curing agent diethylenetriamine (DETA) on the structural, morphological, and barrier properties of epoxy-silica nanocomposites were evaluated. To simulate different stages of concrete aging, electrochemical impedance spectroscopy (EIS) assays were performed for coated samples in a 3.5 wt.% NaCl solution (pH 7) and in simulated concrete pore solutions (SCPS), which represent the hydration environment in fresh concrete (SCPS2, pH 14) and after carbonation (SCPS1, pH 8). The results showed that coatings with an intermediate DETA to DGEBA ratio of 0.4, presented the best long-term corrosion protection with a low-frequency impedance modulus of up to 3.8 GΩ cm2 in NaCl and SCPS1 solutions. Small-angle X-ray scattering and atomic force microscopy analysis revealed that the best performance observed for the intermediate DETA proportion is associated with the presence of larger silica nanodomains, which act as a filler in the cross-linked epoxy matrix, thus favoring the formation of an efficient diffusion barrier.

17.
Interact Cardiovasc Thorac Surg ; 34(1): 128-136, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34999794

RESUMO

OBJECTIVES: We have previously shown in experimental settings that a leaflet foldoplasty device reduces redundant leaflet area to re-establish mitral valve (MV) coaptation. The current study investigates the in vivo device retention and functional durability following foldoplasty. METHODS: The prototype is of superelastic nitinol formed into a 3-dimensional shape. It is unfolded to engage a specified area of leaflet tissue and then folded to exclude this tissue from the coaptation surface. Design modifications were made and tested in benchtop studies to determine the optimal design for durable retention within the leaflet. To evaluate in vivo performance, posterior leaflet chordae were severed in Yorkshire pigs to produce complete posterior leaflet prolapse and severe mitral regurgitation. Design modifications were then used for MV repair. Five animals that underwent repair using the optimal design were observed for 2 weeks postoperative to evaluate the functional result and implant retention. RESULTS: Device position and orientation were maintained at 2 weeks while preserving the functional MV repair in all 5 animals. Coaptation height was 5.5 ± 1.5 mm, which was not significantly different from a baseline of 4.9 ± 0.8 mm. The degree of leaflet excursion was 41.0 ± 16.0 compared to a baseline of 58.7 ± 27.5. CONCLUSIONS: Device foldoplasty is a new concept for MV repair based on the reduction of redundant leaflet tissue area. This study demonstrates the feasibility of safe maintenance of this repair without early dislodgement or embolization.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Insuficiência da Valva Mitral , Prolapso da Valva Mitral , Animais , Procedimentos Cirúrgicos Cardíacos/métodos , Estudos de Viabilidade , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/cirurgia , Prolapso da Valva Mitral/cirurgia , Suínos
18.
Pediatr Res ; 92(3): 721-728, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34837068

RESUMO

BACKGROUND: Endothelial-to-mesenchymal-transition (EndMT) plays a major role in cardiac fibrosis, including endocardial fibroelastosis but the stimuli are still unknown. We developed an endothelial cell (EC) culture and a whole heart model to test whether mechanical strain triggers TGF-ß-mediated EndMT. METHODS: Isolated ECs were exposed to 10% uniaxial static stretch for 8 h (stretch) and TGF-ß-mediated EndMT was determined using the TGF-ß-inhibitor SB431542 (stretch + TGF-ß-inhibitor), BMP-7 (stretch + BMP-7) or losartan (stretch + losartan), and isolated mature and immature rats were exposed to stretch through a weight on the apex of the left ventricle. Immunohistochemical staining for double-staining with endothelial markers (VE-cadherin, PECAM1) and mesenchymal markers (αSMA) or transcription factors (SLUG/SNAIL) positive nuclei was indicative of EndMT. RESULTS: Stretch-induced EndMT in ECs expressed as double-stained ECs/total ECs (cells: 46 ± 13%; heart: 15.9 ± 2%) compared to controls (cells: 7 ± 2%; heart: 3.1 ± 0.1; p < 0.05), but only immature hearts showed endocardial EndMT. Inhibition of TGF-ß decreased the number of double-stained cells significantly, comparable to controls (cells/heart: control: 7 ± 2%/3.1 ± 0.1%, stretch: 46 ± 13%/15 ± 2%, stretch + BMP-7: 7 ± 2%/2.9 ± 0.1%, stretch + TGF-ß-inhibitor (heart only): 5.2 ± 1.3%, stretch + losartan (heart only): 0.89 ± 0.1%; p < 0.001 versus stretch). CONCLUSIONS: Endocardial EndMT is an age-dependent consequence of increased strain triggered by TGF- ß activation. Local inhibition through either rebalancing TGF-ß/BMP or with losartan was effective to block EndMT. IMPACT: Mechanical strain imposed on the immature LV induces endocardial fibroelastosis (EFE) formation through TGF-ß-mediated activation of endothelial-to-mesenchymal transition (EndMT) in endocardial endothelial cells but has no effect in mature hearts. Local inhibition through either rebalancing the TGF-ß/BMP pathway or with losartan blocks EndMT. Inhibition of endocardial EndMT with clinically applicable treatments may lead to a better outcome for congenital heart defects associated with EFE.


Assuntos
Fibroelastose Endocárdica , Endocárdio , Animais , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Fibroelastose Endocárdica/metabolismo , Endocárdio/metabolismo , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Losartan/farmacologia , Ratos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo
19.
Children (Basel) ; 8(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572161

RESUMO

Pulmonary vein stenosis is a serious condition characterized by restriction or blockage due to fibrotic tissue ingrowth that develops in the pulmonary veins of infants or children. It is often progressive and can lead to severe pulmonary hypertension and death. Efforts to halt or reverse disease progression include surgery and catheter-based balloon dilation and stent implantation. Its cause and mechanism of progression are unknown. In this pilot study, we propose and explore the hypothesis that elevated wall shear stress at discrete pulmonary venous sites triggers stenosis. To assess this theory, we retrospectively analyzed cardiac catheterization, lung scan, and X-ray computed tomography data to estimate wall shear stress in the pulmonary veins at multiple time points during disease progression in two patients. Results are consistent with the existence of a level of elevated wall shear stress above which the disease is progressive and below which progression is halted. The analysis also suggests the possibility of predicting the target lumen size necessary in a given vein to reduce wall shear stress to normal levels and remove the trigger for stenosis progression.

20.
Environ Sci Pollut Res Int ; 28(39): 55014-55028, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34121160

RESUMO

Two compositions of graphene oxide-magnetite nanocomposites were studied as catalysts in the heterogeneous Fenton process. Transmission electron microscopy and X-ray diffraction revealed that the graphene oxide sheets were covered with nanoparticles of magnetite, with an average crystallite size of 7 nm. Infrared spectroscopy analysis indicated that the phases interacted through covalent Fe-O-C bonds. The composites presented significantly improved catalytic activity, compared to pure magnetite, with a synergistic effect of up to a factor of 17.1 for the Fenton degradation of caffeine, achieving total removal after 90 min. This synergistic effect was a consequence of the interaction between the phases, resulting in improved mass transfer of caffeine to the catalyst surface, adsorption and efficient degradation, with enhanced HO• generation. The surface reaction constant increased by up to three orders of magnitude, demonstrating the important role of graphene oxide in the degradation kinetics of the heterogeneous Fenton process. The surface-bonded hydroxyl radicals were responsible for caffeine degradation, achieving 9.4 µmol L-1. After five degradation cycles, a loss of Fe-O-C bonds and increase in oxygenated groups were associated with a small decrease of caffeine removal efficiency, from 98 to 82%, without significant iron leaching, in the dark, and with low consumption of hydrogen peroxide.


Assuntos
Cafeína , Nanocompostos , Grafite , Fenômenos Magnéticos , Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA