Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Thromb Haemost ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39029905

RESUMO

BACKGROUND: Platelets prevent extravasation of capillary fluids into the pulmonary interstitial tissue by sealing gaps in inflamed endothelium. This reduces respiratory distress associated with pneumonia. Streptococcus pneumoniae is the leading cause of severe community-acquired pneumonia. Pneumococci produce pneumolysin (PLY), which forms pores in membranes of eukaryotic cells including platelets. Additionally, pneumococci express neuraminidases, which cleave sialic acid residues from eukaryotic glycoproteins. In this study, we investigated the effect of desialylation on PLY binding and pore formation on platelets. MATERIALS AND METHODS: We incubated human platelets with purified neuraminidases and PLY, or nonencapsulated S. pneumoniae D39/TIGR4 and isogenic mutants deficient in PLY and/or NanA. We assessed platelet desialylation, PLY binding, and pore formation by flow cytometry. We also analyzed the inhibitory potential of therapeutic immunoglobulin G preparations (IVIG [intravenous immunoglobulin]). RESULTS: Wild-type pneumococci cause desialylation of platelet glycoproteins by neuraminidases, which is reduced by 90 to 100% in NanA-deficient mutants. NanC, cleaving only α2,3-linked sialic acid, induced platelet desialylation. PLY binding to platelets then x2doubled (p = 0.0166) and pore formation tripled (p = 0.0373). A neuraminidase cleaving α2,3-, α2,6-, and α2,8-linked sialic acid like NanA was even more efficient. Addition of polyvalent IVIG (5 mg/mL) decreased platelet desialylation induced by NanC up to 90% (p = 0.263) and reduced pore formation >95% (p < 0.0001) when incubated with pneumococci. CONCLUSION: Neuraminidases are key virulence factors of pneumococci and desialylate platelet glycoproteins, thereby unmasking PLY-binding sites. This enhances binding of PLY and pore formation showing that pneumococcal neuraminidases and PLY act in concert to kill platelets. However, human polyvalent immunoglobulin G preparations are promising agents for therapeutic intervention during severe pneumococcal pneumonia.

2.
J Innate Immun ; 16(1): 370-384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38901409

RESUMO

INTRODUCTION: The hydrophilic, polymeric chain of the lipoteichoic acid (LTA) of the Gram-positive pathobiont Streptococcus pneumoniae is covalently linked to the glycosylglycerolipid α-d-glucopyranosyl-(1,3)-diacylglycerol by the LTA ligase TacL, leading to its fixation in the cytoplasmic membrane. Pneumococcal LTA, sharing identical repeating units with the wall teichoic acids (WTA), is dispensable for normal growth but required for full virulence in invasive infections. METHODS: Mutants deficient in TacL and complemented strains constructed were tested for their growth, resistance against oxidative stress, and susceptibility against antimicrobial peptides. Further, the membrane fluidity of pneumococci, their capability to adhere to lung epithelial cells, and virulence in a Galleria mellonella as well as intranasal mouse infection model were assessed. RESULTS: In the present study, we indicate that LTA is already indispensable for pneumococcal adherence to human nasopharyngeal cells and colonization in an intranasal mouse infection model. Mutants deficient for TacL did not show morphological defects. However, our analysis of pneumococcal membranes in different serotypes showed an altered membrane fluidity and surface protein abundance of lipoproteins in mutants deficient for LTA but not WTA. These mutants had a decreased membrane fluidity, exhibited higher amounts of lipoproteins, and showed an increased susceptibility to antimicrobial peptides. In complemented mutant strains, this defect was fully restored. CONCLUSION: Taken together, LTA is crucial for colonization and required to effectively protect pneumococci from innate immune defence mechanisms by maintaining the membrane integrity.


Assuntos
Lipopolissacarídeos , Infecções Pneumocócicas , Streptococcus pneumoniae , Ácidos Teicoicos , Ácidos Teicoicos/metabolismo , Animais , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/fisiologia , Camundongos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Humanos , Membrana Celular/metabolismo , Fluidez de Membrana , Virulência , Modelos Animais de Doenças , Feminino
3.
PLoS Pathog ; 20(6): e1011883, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838057

RESUMO

ATP-binding cassette (ABC) transport systems are crucial for bacteria to ensure sufficient uptake of nutrients that are not produced de novo or improve the energy balance. The cell surface of the pathobiont Streptococcus pneumoniae (pneumococcus) is decorated with a substantial array of ABC transporters, critically influencing nasopharyngeal colonization and invasive infections. Given the auxotrophic nature of pneumococci for certain amino acids, the Ami ABC transporter system, orchestrating oligopeptide uptake, becomes indispensable in host compartments lacking amino acids. The system comprises five exposed Oligopeptide Binding Proteins (OBPs) and four proteins building the ABC transporter channel. Here, we present a structural analysis of all the OBPs in this system. Multiple crystallographic structures, capturing both open and closed conformations along with complexes involving chemically synthesized peptides, have been solved at high resolution providing insights into the molecular basis of their diverse peptide specificities. Mass spectrometry analysis of oligopeptides demonstrates the unexpected remarkable promiscuity of some of these proteins when expressed in Escherichia coli, displaying affinity for a wide range of peptides. Finally, a model is proposed for the complete Ami transport system in complex with its various OBPs. We further disclosed, through in silico modelling, some essential structural changes facilitating oligopeptide transport into the cellular cytoplasm. Thus, the structural analysis of the Ami system provides valuable insights into the mechanism and specificity of oligopeptide binding by the different OBPs, shedding light on the intricacies of the uptake mechanism and the in vivo implications for this human pathogen.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Oligopeptídeos , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Oligopeptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Cristalografia por Raios X , Modelos Moleculares , Lipoproteínas
4.
Access Microbiol ; 6(3)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725588

RESUMO

We studied the carriage rate, distribution of serotype, and antimicrobial profile of Streptococcus pneumoniae (S. pneumoniae) among patients with acute respiratory tract infections (ARTI) in two primary health centres and a tertiary referral hospital from 2019 to 2020 in Manado, North Sulawesi, Indonesia before 13-valent pneumococcal conjugate vaccine (PCV13) introduction. A total of 106 nasopharyngeal swab samples were collected from children and adult patients. Serotyping of S. pneumoniae strain was performed by sequential multiplex PCR and Quellung reaction. Antimicrobial profile was performed by the disc diffusion method. We identified thirty-one patients carried S. pneumoniae strains (29 %). The S. pneumoniae carriage rate was found to be higher among children aged 2-5 years (13/32; 40.6 %) than in children under 1 year (8/27; 29.6 %), children and adolescents under 18 years of age (5/20; 25.0 %) and adult patients (5/27; 18.5 %). The distribution of serotypes varied, including 14, 18C, 19A, 23F, 19F and 35B (two strains each) and 1, 3, 6B, 6C, 31, 9V, 15C, 16F, 17F, 23A, 35F (one strain each) and non-typeable (9/31; 29 %). We found S. pneumoniae isolates were susceptible to vancomycin (30/31; 97 %), chloramphenicol (29/31; 94 %), clindamycin (29/31; 94 %), erythromycin (22/31; 71 %), azithromycin (22/31; 71 %), tetracycline (14/31; 45 %), penicillin (11/31; 35 %), and sulfamethoxazole/trimethoprim (10/31; 32 %). This study provides supporting baseline data on distribution of serotype and antimicrobial profile of S. pneumoniae among patients with ARTI before PCV13 introduction in Manado, North Sulawesi, Indonesia.

5.
Front Immunol ; 15: 1392316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711516

RESUMO

Streptococcus pneumoniae remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.


Assuntos
Imunidade Adaptativa , Proteínas de Bactérias , Citocinas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/imunologia , Citocinas/metabolismo , Proteínas de Bactérias/imunologia , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Vacinas Pneumocócicas/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Macrófagos/imunologia , Macrófagos/metabolismo , Células Cultivadas
6.
iScience ; 27(4): 109583, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632998

RESUMO

Bacterial meningitis, frequently caused by Streptococcus pneumoniae (pneumococcus), represents a substantial global health threat leading to long-term neurological disorders. This study focused on the cholesterol-binding toxin pneumolysin (PLY) released by pneumococci, specifically examining clinical isolates from patients with meningitis and comparing them to the PLY-reference S. pneumoniae strain D39. Clinical isolates exhibit enhanced PLY release, likely due to a significantly higher expression of the autolysin LytA. Notably, the same single amino acid (aa) D380 substitution in the PLY D4 domain present in all clinical isolates significantly enhances cholesterol binding, pore-forming activity, and cytotoxicity toward SH-SY5Y-derived neuronal cells. Scanning electron microscopy of human neuronal cells and patch clamp electrophysiological recordings on mouse brain slices confirm the enhanced neurotoxicity of the PLY variant carrying the single aa substitution. This study highlights how a single aa modification enormously alters PLY cytotoxic potential, emphasizing the importance of PLY as a major cause of the neurological sequelae associated with pneumococcal meningitis.

7.
J Innate Immun ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569474

RESUMO

INTRODUCTION: Streptococcus pneumoniae is the most common cause of bacterial meningitis and meningoencephalitis in humans. The bacterium produces numerous virulence determinants, among them hydrogen peroxide (H2O2) and pneumolysin (Ply), which contribute to bacterial cytotoxicity. Microglia, the resident phagocytes in the brain, are distinct from other macrophages, and we thus compared their susceptibility to pneumococcal toxicity and their ability to phagocytose pneumococci with those of bone marrow-derived macrophages (BMDM). METHODS: Microglia and BMDM were co-incubated with S. pneumoniae D39 to analyze survival of phagocytes by fluorescence microscopy, bacterial growth by quantitative plating, and phagocytosis by an antibiotic protection assay. Ply was detected by hemolysis assay and Western blot analysis. RESULTS: We found that microglia were killed during pneumococcal infection with a wild-type and an isogenic ply-deficient mutant, whereas viability of BMDM was not affected by pneumococci. Treatment with recombinant Ply showed a dose-dependent cytotoxic effect on microglia and BMDM. However, high concentrations of recombinant Ply were required and under the chosen experimental conditions, Ply was not detectable in the supernatant during infection of microglia. Inactivation of H2O2 by exogenously added catalase abolished its cytotoxic effect. Consequently, infection of microglia with pneumococci deficient for the pyruvate oxidase SpxB, primarily producing H2O2, resulted in reduced killing of microglia. CONCLUSION: Taken together, in the absence of Ply, H2O2 caused cell death in primary phagocytes in concentrations produced by pneumococci.

8.
J Infect Dis ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679601

RESUMO

Streptococcus pneumoniae is a leading cause of morbidity and mortality in children and older adults. Yet knowledge on the development of pneumococcal protein-specific antibody responses throughout life is limited. To investigate this, we measured serum IgG levels to 55 pneumococcal proteins in 11-month old infants (n=73), 24-month old children (n=101), parents (n=99), adults without children <6 years of age (n= 99) and older adults aged >60 years (n=100). Our findings revealed low IgG levels in infancy, with distinct development patterns peaking in adults. A decrease in levels was observed for 27 antigens towards older age. Adults and older adults had increased IgG levels during pneumococcal carriage and at increased exposure risk to S. pneumoniae. Carriage was a stronger predictor than exposure or age for antibody responses. These findings highlight the dynamic nature of naturally acquired humoral immunity to pneumococcal proteins throughout life, offering insights for age-targeted interventions.

9.
JCI Insight ; 9(6)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358825

RESUMO

Despite effective antibiotic therapy, brain-destructive inflammation often cannot be avoided in pneumococcal meningitis. The causative signals are mediated predominantly through TLR-recruited myeloid differentiation primary response adaptor 88 (MyD88), as indicated by a dramatic pneumococcal meningitis phenotype of Myd88-/- mice. Because lipoproteins and single-stranded RNA are crucial for recognition of Gram-positive bacteria such as Streptococcus pneumoniae by the host immune system, we comparatively analyzed the disease courses of Myd88-/- and Tlr2-/- Tlr13-/- mice. Their phenotypic resemblance indicated TLR2 and -13 as master sensors of S. pneumoniae in the cerebrospinal fluid. A neutralizing anti-TLR2 antibody (T2.5) and chloroquine (CQ) - the latter applied here as an inhibitor of murine TLR13 and its human ortholog TLR8 - abrogated activation of murine and human primary immune cells exposed to antibiotic-treated S. pneumoniae. The inhibitory effect of the T2.5/CQ cocktail was stronger than that of dexamethasone, the current standard adjunctive drug for pneumococcal meningitis. Accordingly, TLR2/TLR13 blockade concomitant with ceftriaxone application significantly improved the clinical course of pneumococcal meningitis compared with treatment with ceftriaxone alone or in combination with dexamethasone. Our study indicates the importance of murine TLR13 and human TLR8, besides TLR2, in pneumococcal meningitis pathology, and suggests their blockade as a promising antibiotic therapy adjunct.


Assuntos
Meningite Pneumocócica , Camundongos , Humanos , Animais , Meningite Pneumocócica/tratamento farmacológico , Meningite Pneumocócica/complicações , Meningite Pneumocócica/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Receptor 2 Toll-Like/metabolismo , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Fator 88 de Diferenciação Mieloide , Receptor 8 Toll-Like , Streptococcus pneumoniae , Encéfalo/metabolismo , Dexametasona/farmacologia
10.
mBio ; 15(1): e0022523, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112465

RESUMO

IMPORTANCE: The prevalence of multidrug-resistant Staphylococcus aureus is of global concern, and vaccines are urgently needed. The iron-regulated surface determinant protein B (IsdB) of S. aureus was investigated as a vaccine candidate because of its essential role in bacterial iron acquisition but failed in clinical trials despite strong immunogenicity. Here, we reveal an unexpected second function for IsdB in pathogen-host interaction: the bacterial fitness factor IsdB triggers a strong inflammatory response in innate immune cells via Toll-like receptor 4 and the inflammasome, thus acting as a novel pathogen-associated molecular pattern of S. aureus. Our discovery contributes to a better understanding of how S. aureus modulates the immune response, which is necessary for vaccine development against the sophisticated pathogen.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte de Cátions , Citocinas , Staphylococcus aureus Resistente à Meticilina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções Estafilocócicas , Receptor 4 Toll-Like , Humanos , Proteínas de Bactérias/imunologia , Caspase 1/metabolismo , Proteínas de Transporte de Cátions/imunologia , Citocinas/metabolismo , Inflamassomos/metabolismo , Ferro/metabolismo , Staphylococcus aureus Resistente à Meticilina/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções Estafilocócicas/imunologia , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA