Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(39): 24398-24409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354824

RESUMO

Nanopore probing of molecular level transport of proteins is strongly influenced by electrolyte type, concentration, and solution pH. As a result, electrolyte chemistry and applied voltage are critical for protein transport and impact, for example, capture rate (C R), transport mechanism (i.e., electrophoresis, electroosmosis or diffusion), and 3D conformation (e.g., chaotropic vs. kosmotropic effects). In this study, we explored these using 0.5-4 M LiCl and KCl electrolytes with holo-human serum transferrin (hSTf) protein as the model protein in both low (±50 mV) and high (±400 mV) electric field regimes. Unlike in KCl, where events were purely electrophoretic, the transport in LiCl transitioned from electrophoretic to electroosmotic with decreasing salt concentration while intermediate concentrations (i.e., 2 M and 2.5 M) were influenced by diffusion. Segregating diffusion-limited capture rate (R diff) into electrophoretic (R diff,EP) and electroosmotic (R diff,EO) components provided an approach to calculate the zeta-potential of hSTf (ζ hSTf) with the aid of C R and zeta potential of the nanopore surface (ζ pore) with (ζ pore-ζ hSTf) governing the transport mechanism. Scrutinization of the conventional excluded volume model revealed its shortcomings in capturing surface contributions and a new model was then developed to fit the translocation characteristics of proteins.

2.
Plant Physiol Biochem ; 155: 384-395, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32814275

RESUMO

Water deficit limits plant growth and development by interfering with several physiological and molecular processes both in root and shoot tissues. Through their ability to scavenge nitric oxide (NO), phytoglobins (Pgbs) exercise a protective role during several conditions of stress. While their action has been mainly documented in roots, it is unclear whether Pgb exercises a specific and direct role in shoot tissue. We used a Zea mays root-less system to assess how over-expression or down-regulation of ZmPgb1.1 influences the behavior of shoots exposed to polyethylene glycol (PEG)-simulated water deficit. Relative to their WT and ZmPgb1.1 down-regulating counterparts, PEG-treated shoots over-expressing ZmPgb1.1 exhibited a reduced accumulation of ROS and lipid peroxidation. These effects were ascribed to lower transcript levels of Respiratory Burst Oxidase Homolog (RBOH) genes encoding the ROS generating enzyme complex NADPH oxidase, and a more active antioxidant system. Furthermore, over-expression of ZmPgb1.1 attenuated the reduction in osmotic potential and relative water content experienced during water stress, an observation also demonstrated at a whole plant level, possibly through the retention of the expression of three aquaporins involved in water transfer and implicated in drought tolerance. Pharmacological treatments modulating NO and ethylene levels revealed that the ZmPgb1.1 action was mediated by ethylene synthesis and response, with NO acting as an upstream intermediate. Collectively we provide substantial evidence that ZmPgb1.1 exercises a direct role in shoot tissue, independent from that previously reported in roots, which confers tolerance to water stress.


Assuntos
Desidratação , Hemoglobinas/fisiologia , Proteínas de Plantas/fisiologia , Zea mays/fisiologia , Aquaporinas/fisiologia , Regulação da Expressão Gênica de Plantas , Humanos , Óxido Nítrico/metabolismo , Brotos de Planta/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Água
3.
J Exp Bot ; 68(20): 5653-5668, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29059380

RESUMO

Maintenance of a functional root is fundamental to plant survival in response to some abiotic stresses, such as water deficit. In this study, we found that overexpression of Arabidopsis class 1 phytoglobin (AtPgb1) alleviated the growth retardation of polyethylene glycol (PEG)-induced water stress by reducing programmed cell death (PCD) associated with protein folding in the endoplasmic reticulum (ER). This was in contrast to PEG-stressed roots down-regulating AtPgb1 that exhibited extensive PCD and reduced expression of several attenuators of ER stress, including BAX Inhibitor-1 (BI-1). The death program experienced by the suppression of AtPgb1 in stressed roots was mediated by reactive oxygen species (ROS) and ethylene. Suppression of ROS synthesis or ethylene perception reduced PCD and partially restored root growth. The PEG-induced cessation of root growth was preceded by structural changes in the root apical meristem (RAM), including the loss of cell and tissue specification, possibly as a result of alterations in PIN1- and PIN4-mediated auxin accumulation at the root pole. These events were attenuated by the overexpression of AtPgb1 and aggravated when AtPgb1 was suppressed. Specifically, suppression of AtPgb1 compromised the functionality of the WOX5-expressing quiescent cells (QCs), leading to the early and premature differentiation of the adjacent columella stem cells and to a rapid reduction in meristem size. The expression and localization of other root domain markers, such as SCARECROW (SCR), which demarks the endodermis and QCs, and WEREWOLF (WER), which specifies the lateral root cap, were also most affected in PEG-treated roots with suppressed AtPgb1. Collectively, the results demonstrate that AtPgb1 exercises a protective role in roots exposed to lethal levels of PEG, and suggest a novel function of this gene in ensuring meristem functionality through the retention of cell fate specification.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Morte Celular/genética , Secas , Hemoglobinas/genética , Raízes de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hemoglobinas/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Polietilenoglicóis/farmacologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA