Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38076999

RESUMO

PAX3/7 Fusion-negative rhabdomyosarcoma (FN-RMS) is a childhood mesodermal lineage malignancy with a poor prognosis for metastatic or relapsed cases. Towards achieving a more complete understanding of advanced FN-RMS, we developed an orthotopic tongue xenograft model for studies of molecular basis of FN-RMS invasion and metastasis. The behavior of FN-RMS cells injected into murine tongue was examined using in vivo bioluminescence imaging, non-invasive intravital microscopy (IVM), and histopathology and compared to the prevailing hindlimb intramuscular and subcutaneous xenografts. FN-RMS cells were retained in the tongue and invaded locally into muscle mysial spaces and vascular lumen. While evidence of hematogenous dissemination to the lungs occurred in tongue and intramuscular xenografts, evidence of local invasion and lymphatic dissemination to lymph nodes only occurred in tongue xenografts. IVM and RNA-seq of tongue xenografts reveal shifts in cellular phenotype and differentiation state in tongue xenografts. IVM also shows homing to blood and lymphatic vessels, lymphatic intravasation, and dynamic membrane protrusions. Based on these findings, the tongue orthotopic xenograft of FN-RMS is a valuable model for tumor progression studies at the tissue, cellular and subcellular levels providing insight into kinetics and molecular bases of tumor invasion and metastasis and, hence, new therapeutic avenues for advanced FN-RMS.

2.
J Biol Chem ; 299(3): 102992, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758799

RESUMO

The ADP-ribosylation factor (Arf) GTPases and their regulatory proteins are implicated in cancer progression. NAV-2729 was previously identified as a specific inhibitor of Arf6 that reduced progression of uveal melanoma in an orthotopic xenograft. Here, our goal was to assess the inhibitory effects of NAV-2729 on the proliferation of additional cell types. We found NAV-2729 inhibited proliferation of multiple cell lines, but Arf6 expression did not correlate with NAV-2729 sensitivity, and knockdown of Arf6 affected neither cell viability nor sensitivity to NAV-2729. Furthermore, binding to native Arf6 was not detected; however, we determined that NAV-2729 inhibited both Arf exchange factors and Arf GTPase-activating proteins. ASAP1, a GTPase-activating protein linked to cancer progression, was further investigated. We demonstrated that NAV-2729 bound to the PH domain of ASAP1 and changed ASAP1 cellular distribution. However, ASAP1 knockdown did not fully recapitulate the cytoskeletal effects of NAV-2729 nor affect cell proliferation. Finally, our screens identified 48 other possible targets of NAV-2729. These results illustrate the complexities of defining targets of small molecules and identify NAV-2729 as a model PH domain-binding inhibitor.


Assuntos
Fatores de Ribosilação do ADP , Neoplasias , Humanos , Fatores de Ribosilação do ADP/metabolismo , Clorobenzenos , Pirazóis , Proteínas Ativadoras de GTPase/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo
3.
Front Immunol ; 13: 865845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529862

RESUMO

Since its emergence as a pandemic in March 2020, coronavirus disease (COVID-19) outcome has been explored via several predictive models, using specific clinical or biochemical parameters. In the current study, we developed an integrative non-linear predictive model of COVID-19 outcome, using clinical, biochemical, immunological, and radiological data of patients with different disease severities. Initially, the immunological signature of the disease was investigated through transcriptomics analysis of nasopharyngeal swab samples of patients with different COVID-19 severity versus control subjects (exploratory cohort, n=61), identifying significant differential expression of several cytokines. Accordingly, 24 cytokines were validated using a multiplex assay in the serum of COVID-19 patients and control subjects (validation cohort, n=77). Predictors of severity were Interleukin (IL)-10, Programmed Death-Ligand-1 (PDL-1), Tumor necrosis factors-α, absolute neutrophil count, C-reactive protein, lactate dehydrogenase, blood urea nitrogen, and ferritin; with high predictive efficacy (AUC=0.93 and 0.98 using ROC analysis of the predictive capacity of cytokines and biochemical markers, respectively). Increased IL-6 and granzyme B were found to predict liver injury in COVID-19 patients, whereas interferon-gamma (IFN-γ), IL-1 receptor-a (IL-1Ra) and PD-L1 were predictors of remarkable radiological findings. The model revealed consistent elevation of IL-15 and IL-10 in severe cases. Combining basic biochemical and radiological investigations with a limited number of curated cytokines will likely attain accurate predictive value in COVID-19. The model-derived cytokines highlight critical pathways in the pathophysiology of the COVID-19 with insight towards potential therapeutic targets. Our modeling methodology can be implemented using new datasets to identify key players and predict outcomes in new variants of COVID-19.


Assuntos
COVID-19 , Citocinas , Progressão da Doença , Humanos , Pandemias , SARS-CoV-2 , Índice de Gravidade de Doença
4.
Cancers (Basel) ; 14(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406434

RESUMO

Severe asthma and lung cancer are both heterogeneous pathological diseases affecting the lung tissue. Whilst there are a few studies that suggest an association between asthma and lung cancer, to the best of our knowledge, this is the first study to identify common genes involved in both severe asthma and lung cancer. Publicly available transcriptomic data for 23 epithelial brushings from severe asthmatics and 55 samples of formalin-fixed paraffin-embedded (FFPE) lung cancer tissue at relatively early stages were analyzed by absolute gene set enrichment analysis (GSEA) in comparison to 37 healthy bronchial tissue samples. The key pathways enriched in asthmatic patients included adhesion, extracellular matrix, and epithelial cell proliferation, which contribute to tissue remodeling. In the lung cancer dataset, the main pathways identified were receptor tyrosine kinase signaling, wound healing, and growth factor response, representing the early cancer pathways. Analysis of the enriched genes derived from the pathway analysis identified seven genes expressed in both the asthma and lung cancer sets: BCL3, POSTN, PPARD, STAT1, MYC, CD44, and FOSB. The differential expression of these genes was validated in vitro in the cell lines retrieved from different lung cancer and severe asthma patients using real-time PCR. The effect of the expression of the seven genes identified in the study on the overall survival of lung cancer patients (n = 1925) was assessed using a Kaplan-Meier plot. In vivo validation performed in the archival biopsies obtained from patients diagnosed with both the disease conditions provided interesting insights into the pathogenesis of severe asthma and lung cancer, as indicated by the differential expression pattern of the seven transcripts in the mixed group as compared to the asthmatics and lung cancer samples alone.

5.
Comput Struct Biotechnol J ; 19: 5198-5209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745451

RESUMO

To investigate intracellular heterogeneity, cell capture of particular cell populations followed by transcriptome analysis has been highly effective in freshly isolated tissues. However, this approach has been quite challenging in immunostained formalin-fixed paraffin-embedded (FFPE) sections. This study aimed at combining the standard pathology techniques, immunostaining and laser capture microdissection, with whole RNA-sequencing and bioinformatics analysis to characterize FFPE breast cancer cell populations with heterogeneous expression of progesterone receptor (PR). Immunocytochemical analysis revealed that 60% of MCF-7 cells admixture highly express PR. Immunocytochemistry-based targeted RNA-seq (ICC-RNAseq) and in silico functional analysis revealed that the PR-high cell population is associated with upregulation in transcripts implicated in immunomodulatory and inflammatory pathways (e.g. NF-κB and interferon signaling). In contrast, the PR-low cell population is associated with upregulation of genes involved in metabolism and mitochondrial processes as well as EGFR and MAPK signaling. These findings were cross-validated and confirmed in FACS-sorted PR high and PR-low MCF-7 cells and in MDA-MB-231 cells ectopically overexpressing PR. Significantly, ICC-RNAseq could be extended to analyze samples captured at specific spatio-temporal states to investigate gene expression profiles using diverse biomarkers. This would also facilitate our understanding of cell population-specific molecular events driving cancer and potentially other diseases.

6.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358107

RESUMO

The emergence of the COVID-19 pandemic has mandated the instant (re)search for potential drug candidates. In response to the unprecedented situation, it was recognized early that repurposing of available drugs in the market could timely save lives, by skipping the lengthy phases of preclinical and initial safety studies. BenevolentAI's large knowledge graph repository of structured medical information suggested baricitinib, a Janus-associated kinase inhibitor, as a potential repurposed medicine with a dual mechanism; hindering SARS-CoV2 entry and combatting the cytokine storm; the leading cause of mortality in COVID-19. However, the recently-published Adaptive COVID-19 Treatment Trial-2 (ACTT-2) positioned baricitinib only in combination with remdesivir for treatment of a specific category of COVID-19 patients, whereas the drug is not recommended to be used alone except in clinical trials. The increased pace of data output in all life sciences fields has changed our understanding of data processing and manipulation. For the purpose of drug design, development, or repurposing, the integration of different disciplines of life sciences is highly recommended to achieve the ultimate benefit of using new technologies to mine BIG data, however, the final say remains to be concluded after the drug is used in clinical practice. This review demonstrates different bioinformatics, chemical, pharmacological, and clinical aspects of baricitinib to highlight the repurposing journey of the drug and evaluates its placement in the current guidelines for COVID-19 treatment.

7.
Front Immunol ; 12: 595150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262555

RESUMO

As one of the current global health conundrums, COVID-19 pandemic caused a dramatic increase of cases exceeding 79 million and 1.7 million deaths worldwide. Severe presentation of COVID-19 is characterized by cytokine storm and chronic inflammation resulting in multi-organ dysfunction. Currently, it is unclear whether extrapulmonary tissues contribute to the cytokine storm mediated-disease exacerbation. In this study, we applied systems immunology analysis to investigate the immunomodulatory effects of SARS-CoV-2 infection in lung, liver, kidney, and heart tissues and the potential contribution of these tissues to cytokines production. Notably, genes associated with neutrophil-mediated immune response (e.g. CXCL1) were particularly upregulated in lung, whereas genes associated with eosinophil-mediated immune response (e.g. CCL11) were particularly upregulated in heart tissue. In contrast, immune responses mediated by monocytes, dendritic cells, T-cells and B-cells were almost similarly dysregulated in all tissue types. Focused analysis of 14 cytokines classically upregulated in COVID-19 patients revealed that only some of these cytokines are dysregulated in lung tissue, whereas the other cytokines are upregulated in extrapulmonary tissues (e.g. IL6 and IL2RA). Investigations of potential mechanisms by which SARS-CoV-2 modulates the immune response and cytokine production revealed a marked dysregulation of NF-κB signaling particularly CBM complex and the NF-κB inhibitor BCL3. Moreover, overexpression of mucin family genes (e.g. MUC3A, MUC4, MUC5B, MUC16, and MUC17) and HSP90AB1 suggest that the exacerbated inflammation activated pulmonary and extrapulmonary tissues remodeling. In addition, we identified multiple sets of immune response associated genes upregulated in a tissue-specific manner (DCLRE1C, CHI3L1, and PARP14 in lung; APOA4, NFASC, WIPF3, and CD34 in liver; LILRA5, ISG20, S100A12, and HLX in kidney; and ASS1 and PTPN1 in heart). Altogether, these findings suggest that the cytokines storm triggered by SARS-CoV-2 infection is potentially the result of dysregulated cytokine production by inflamed pulmonary and extrapulmonary (e.g. liver, kidney, and heart) tissues.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , Rim/imunologia , Fígado/imunologia , Pulmão/imunologia , Miocárdio/imunologia , Pandemias , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Biomarcadores/sangue , COVID-19/sangue , COVID-19/complicações , Estudos de Casos e Controles , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Citocinas/biossíntese , Humanos , Imunidade/genética , Monócitos/imunologia , Neutrófilos/imunologia , Transcriptoma , Regulação para Cima/genética
8.
Front Nutr ; 8: 668901, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095191

RESUMO

Purpose: To examine the dietary patterns and their associations with the FTO and FGF21 gene variants among Emirati adults. Methods: Using a cross-sectional design, healthy adult male and female Emiratis (n = 194) were recruited from primary health care centers in Sharjah, UAE. Participants completed a 61-item semi-quantitative food frequency questionnaire. In addition, a saliva sample was obtained for the genetic analysis. Genotyping was performed for FTOrs9939609(A>T), FTOrs9930506(A>G), FGF21 rs838133 (A > G), and FGF21 rs838145 (A > G). Dietary patterns were derived using the principal component analysis. Logistic regression analyses were used to examine the association of dietary patterns with genetic variants. Results: Three dietary patterns were identified: "Western": consisting of fast food, sweets, and processed meat; "Traditional Emirati" rich in vegetables, traditional Emirati-mixed-dishes and whole dairy; while whole grains, low-fat dairy, and bulgur were components of the "Prudent" pattern. Subjects carrying the A allele of the FTO rs9939609 were 2.41 times more likely to adhere to the Western pattern compared to subjects with genotype TT (OR:2.41; 95%CI:1.05-5.50). Compared with subjects with A/A, those carrying the G allele of the FTO rs9930506 were more likely to follow a Western diet (OR: 2.19; 95%CI: 1.00-4.97). Participants carrying the risk allele (A) of the FGF21 rs838133 were twice more likely to adhere to the Traditional pattern as compared to subjects with genotype GG (OR: 1.9, 95%CI: 1.01-3.57). Conclusions: The findings of this study suggested associations among specific FTO and FGF21 gene variants with dietary patterns among Emirati adults. These findings could be used to inform evidence-based targeted nutrition preventive recommendations, especially those aiming to limit intake of western type foods.

9.
World J Gastroenterol ; 27(21): 2850-2870, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34135558

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19), a pandemic contributing to more than 105 million cases and more than 2.3 million deaths worldwide, was described to be frequently accompanied by extrapulmonary manifestations, including liver dysfunction. Liver dysfunction and elevated liver enzymes were observed in about 53% of COVID-19 patients. AIM: To gain insight into transcriptional abnormalities in liver tissue of severe COVID-19 patients that may result in liver dysfunction. METHODS: The transcriptome of liver autopsy samples from severe COVID-19 patients against those of non-COVID donors was analyzed. Differentially expressed genes were identified from normalized RNA-seq data and analyzed for the enrichment of functional clusters and pathways. The differentially expressed genes were then compared against the genetic signatures of liver diseases including cirrhosis, fibrosis, non-alcoholic fatty liver disease (NAFLD), and hepatitis A/B/C. Gene expression of some differentially expressed genes was assessed in the blood samples of severe COVID-19 patients with liver dysfunction using qRT-PCR. RESULTS: Analysis of the differential transcriptome of the liver tissue of severe COVID-19 patients revealed a significant upregulation of transcripts implicated in tissue remodeling including G-coupled protein receptors family genes, DNAJB1, IGF2, EGFR, and HDGF. Concordantly, the differential transcriptome of severe COVID-19 liver tissues substantially overlapped with the disease signature of liver diseases characterized with pathological tissue remodeling (liver cirrhosis, Fibrosis, NAFLD, and hepatitis A/B/C). Moreover, we observed a significant suppression of transcripts implicated in metabolic pathways as well as mitochondrial function, including cytochrome P450 family members, ACAD11, CIDEB, GNMT, and GPAM. Consequently, drug and xenobiotics metabolism pathways are significantly suppressed suggesting a decrease in liver detoxification capacity. In correspondence with the RNA-seq data analysis, we observed a significant upregulation of DNAJB1 and HSP90AB1 as well as significant downregulation of CYP39A1 in the blood plasma of severe COVID-19 patients with liver dysfunction. CONCLUSION: Severe COVID-19 patients appear to experience significant transcriptional shift that may ensue tissue remodeling, mitochondrial dysfunction and lower hepatic detoxification resulting in the clinically observed liver dysfunction.


Assuntos
COVID-19 , Hepatopatia Gordurosa não Alcoólica , Proteínas de Choque Térmico HSP40 , Humanos , Fígado , SARS-CoV-2 , Esteroide Hidroxilases , Biologia de Sistemas , Transcriptoma
10.
Front Immunol ; 11: 569671, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381110

RESUMO

Immunomodulation and chronic inflammation are important mechanisms utilized by cancer cells to evade the immune defense and promote tumor progression. Therefore, various efforts were focused on the development of approaches to reprogram the immune response to increase the immune detection of cancer cells and enhance patient response to various types of therapy. A number of regulatory proteins were investigated and proposed as potential targets for immunomodulatory therapeutic approaches including p53 and Snail. In this study, we investigated the immunomodulatory effect of disrupting Snail-p53 binding induced by the oncogenic KRAS to suppress p53 signaling. We analyzed the transcriptomic profile mediated by Snail-p53 binding inhibitor GN25 in non-small cell lung cancer cells (A549) using Next generation whole RNA-sequencing. Notably, we observed a significant enrichment in transcripts involved in immune response pathways especially those contributing to neutrophil (IL8) and T-cell mediated immunity (BCL6, and CD81). Moreover, transcripts associated with NF-κB signaling were also enriched which may play an important role in the immunomodulatory effect of Snail-p53 binding. Further analysis revealed that the immune expression signature of GN25 overlaps with the signature of other therapeutic compounds known to exhibit immunomodulatory effects validating the immunomodulatory potential of targeting Snail-p53 binding. The effects of GN25 on the immune response pathways suggest that targeting Snail-p53 binding might be a potentially effective therapeutic strategy.


Assuntos
Mutação , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição da Família Snail/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Imunidade Celular/genética , Imunomodulação , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Transdução de Sinais
11.
J Adv Res ; 24: 485-494, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32566284

RESUMO

Food predilection is linked to variants in the hepatokine "Fibroblast Growth Factor-21" gene (FGF21); with rs838133 linked to the sweet tooth in Caucasians. The effect of FGF21 variants on food intake is still unclear in other populations. A cohort of 196 healthy Emirati subjects was investigated [age: 30.34 ± 9.75yrs (44.4% males)]. The FGF21 rs838133 and rs838145 were genotyped. The daily intake was calculated based on a 61-item food frequency questionnaire. Multivariate analysis was performed using in house R script that implements two-way unsupervised hierarchical clustering to detect the association of the studied single-nucleotide polymorphisms (SNPs) and related SNPs in linkage disequilibrium, using data from the 1000 genome project. Both SNPs were in Hardy-Weinberg Equilaribium (HWE). BMI positively correlated with age (p = 0.002), but not with caloric intake. Salt intake was significantly higher in subjects homozygous (A: rs838133) and (G:rs838145),(p = 0.03 and 0.01, respectively). An interaction was observed between both SNPs; significantly associated with high salt intake. Using publicly available data, both SNPs fall within a region transmitted in Iberians which has a profile closely similar to Caucasians, but far from Chinese population. In conclusion, the minor alleles of FGF21 rs838145 and rs838133 are associated with high salt intake in Emiratis and may suggest neuro-metabolic link to dietary preference across different populations.

12.
PLoS One ; 14(10): e0223808, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622411

RESUMO

BACKGROUND: The risk of obesity is determined by complex interactions between genetic and environmental factors. Little research to date has investigated the interaction between gene and food intake. The aim of the current study is to explore the potential effect of fat mass and obesity-associated protein gene (FTO) rs9939609 and rs9930506 single nucleotide polymorphism (SNP) on the pattern of food intake in the Emirati population. METHODS: Adult healthy Emirati subjects with Body mass index (BMI) of 16-40 kg/m2 were included in the study. Genotyping for FTO rs9939609(A>T) and rs9930506(A>G) was performed using DNA from saliva samples. Subjects were categorized according to the WHO classification by calculating the BMI to compare different classes. Dietary intake was assessed by a sixty-one-item FFQ that estimated food and beverage intakes over the past year. The daily energy, macronutrient, and micronutrient consumption were computed. RESULTS: We included 169 subjects in the final analysis (mean age 30.49± 9.1years, 57.4% females). The mean BMI of the study population was 26.19 kg/m2. Both SNPs were in Hardy Weinberg Equilibrium. The rs9939609 AA genotype was significantly associated with higher BMI (p = 0.004); the effect was significant in females (p = 0.028), but not in males (p = 0.184). Carbohydrate intake was significantly higher in AA subjects with a trend of lower fat intake compared to other genotypes. The odds ratio for the AA was 3.78 in the fourth quartile and 2.67 for the A/T in the second quartile of total carbohydrate intake, considering the first quartile as a reference (95% CI = 1.017-14.1 and 1.03-6.88, respectively). Fat intake was significantly lower in the FTO rs9930506 GG subjects. The presence of FTO rs9930506 GG genotype decreased the fat intake in subjects with FTO rs9939609 AA (p = 0.037). CONCLUSIONS: The results of this study highlight the interaction of the FTO risk alleles on the food intake in Emirati subjects. The FTO rs9939609 AA subjects had higher carbohydrate and lower fat intake. The latter was accentuated in presence of rs9930506 GG genotype.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Obesidade/genética , Adolescente , Adulto , Alelos , Índice de Massa Corporal , Carboidratos da Dieta , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/patologia , Polimorfismo de Nucleotídeo Único , Adulto Jovem
13.
Histochem Cell Biol ; 152(1): 75-84, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30778673

RESUMO

One of the main aspects investigated in potential therapeutic compounds is their effect on cells viability and proliferative ability. Although various methods have been developed to investigate these aspects, these methods present with shortcomings in terms of either cost, availability, accuracy, precision, or throughput. This study describes a simple, economic, reproducible, and high-throughput assay to quantify cell death and proliferation. In this assay, adherent cells are fixed, stained with trypan blue, and measured for trypan blue internalization using a spectrophotometric absorbance plate reader. Corresponding cell counts to the absorbance measurements are extrapolated from a standard curve. This assay was used to measure the effect of dimethyl sulfoxide (DMSO) on the viability of breast and lung cancer cells. Decrease in cell count associated with the increase in DMSO percentage and exposure time. The assay's results closely correlated with the conventional trypan blue exclusion assay (Pearson correlation coefficient (r) > 0.99; p < 0.0001), but with higher precision. The assay developed in this study can be used for various applications such as optimization, cell treatment investigations, proliferation, and cytotoxicity studies.


Assuntos
Neoplasias da Mama/patologia , Dimetil Sulfóxido/farmacologia , Neoplasias Pulmonares/patologia , Azul Tripano/análise , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Humanos , Espectrofotometria , Azul Tripano/química
14.
Gene ; 681: 93-98, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30273662

RESUMO

BACKGROUND: Fat mass and obesity-associated protein gene variants have shown diverse influence on body weight and metabolism across different populations. Overweight, obesity and metabolic syndrome are multifactorial major health problems in the UAE and worldwide. Insulin resistance represents the link between overweight and development of metabolic syndrome and type 2 diabetes mellitus. We investigated two (FTO) variants in Emirati population, in relation to insulin resistance and different parameters of metabolic syndrome. METHODS: We recruited 259 Emiratis through the UAE National Diabetes and Lifestyle Project. Ethical approval was obtained. Besides basic data collection, venous blood samples were collected. Fasting blood glucose, Lipid profile, and insulin levels were measured. Genotyping for (FTO) rs9939609 (A>T) and rs9930506 (G>A) were performed using real time-PCR. Insulin resistance were identified using HOMA2-IR calculation; with a cut-off point of 1.4 for female and 1.18 for male subjects. RESULTS: The study included 259 Emiratis (age range 30-53 years, mean 41.76 years, 54.4% females), 24.5% are diabetic and 30.8% are hypertensive, with body mass index of 28.4 ±â€¯5.9 and 28.7 ±â€¯5.7 kg/m2 in female and male subjects, respectively. Homozygous A of rs9939609 showed significantly higher fasting glucose compared to other genotypes (p = 0.04) with a trend of higher insulin level and HOMA-2IR. The A/A diabetic patients (n = 13) showed significantly higher insulin levels compared to other genotypes. G allele of rs9930506 showed a trend of higher fasting glucose and HOMA-2IR, but lower insulin level and HbA1c. No association of genotypes was detected with other components of metabolic syndrome. CONCLUSION: There is an association of FTO rs9939609 A/A genotype and impaired fasting glucose and insulin resistance. Homozygous A genotype diabetic patients may be more vulnerable to blood glucose fluctuation. Focused genotyping can help the health care providers to identify high risk groups of both normal population and diabetic patients to intervene accordingly.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Glicemia/genética , Intolerância à Glucose/genética , Resistência à Insulina/genética , Polimorfismo de Nucleotídeo Único , Adulto , Alelos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Jejum/sangue , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Intolerância à Glucose/sangue , Intolerância à Glucose/epidemiologia , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/genética , Pessoa de Meia-Idade , Sobrepeso/sangue , Sobrepeso/epidemiologia , Sobrepeso/genética , Estado Pré-Diabético/sangue , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/genética , Emirados Árabes Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA