Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 66(2): 146-157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668840

RESUMO

Some previous studies in tissue fibrosis have suggested a profibrotic contribution from elevated expression of a protein termed either RGCC (regulator of cell cycle) or RGC-32 (response gene to complement 32 protein). Our analysis of public gene expression datasets, by contrast, revealed a consistent decrease in RGCC mRNA levels in association with pulmonary fibrosis. Consistent with this observation, we found that stimulating primary adult human lung fibroblasts with transforming growth factor (TGF)-ß in cell cultures elevated collagen expression and simultaneously attenuated RGCC mRNA and protein levels. Moreover, overexpression of RGCC in cultured lung fibroblasts attenuated the stimulating effect of TGF-ß on collagen levels. Similar to humans with pulmonary fibrosis, the levels of RGCC were also decreased in vivo in lung tissues of wild-type mice challenged with bleomycin in both acute and chronic models. Mice with constitutive RGCC gene deletion accumulated more collagen in their lungs in response to chronic bleomycin challenge than did wild-type mice. RNA-Seq analyses of lung fibroblasts revealed that RGCC overexpression alone had a modest transcriptomic effect, but in combination with TGF-ß stimulation, induced notable transcriptomic changes that negated the effects of TGF-ß, including on extracellular matrix-related genes. At the level of intracellular signaling, RGCC overexpression delayed early TGF-ß-induced Smad2/3 phosphorylation, elevated the expression of total and phosphorylated antifibrotic mediator STAT1, and attenuated the expression of a profibrotic mediator STAT3. We conclude that RGCC plays a protective role in pulmonary fibrosis and that its decline permits collagen accumulation. Restoration of RGCC expression may have therapeutic potential in pulmonary fibrosis.


Assuntos
Fibroblastos/metabolismo , Pulmão/metabolismo , Proteínas Nucleares/fisiologia , Fibrose Pulmonar/prevenção & controle , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Animais , Ciclo Celular , Células Cultivadas , Feminino , Fibroblastos/patologia , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Proteína Smad2/genética , Transcriptoma , Fator de Crescimento Transformador beta3/genética
2.
Cell Immunol ; 357: 104203, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32977155

RESUMO

IL-33 has emerged as a central mediator of immune, inflammatory, and fibrotic responses. Many studies have focused on mature IL-33, but elevated expression of the precursor, full-length IL-33 (FLIL33), has also been implicated in a spectrum of diseases, including tissue fibrosis. We previously reported and now confirmed that overexpression of FLIL33 induced phosphorylation of the key profibrotic signaling mediator of TGF-ß, Smad3, in primary human lung fibroblasts from healthy donors and idiopathic pulmonary fibrosis patients. Presently, we demonstrate that FLIL33-induced Smad3 phosphorylation was not abrogated by anti-TGF-ß antibody but was abrogated by ALK5/TGFBR1-specific and Smad3-specific inhibition, indicating that FLIL33 effect was independent of TGF-ß but dependent on its receptor, TGFBR. Western blotting analyses revealed that FLIL33 overexpression increased levels, but did not affect subcellular distribution, of the AP2A1 and AP2B1 subunits of the adaptor protein complex 2 (AP2), a known TGFBR binding partner. siRNA-mediated inhibition of these subunits blocked FLIL33-induced Smad3 phosphorylation, whereas AP2 subunit overexpression induced Smad3 phosphorylation even in the absence of FLIL33. RNA-Seq transcriptomic analyses revealed that fibroblast stimulation with TGF-ß induced major changes in expression levels of numerous genes, whereas overexpression of FLIL33 induced modest expression changes in a small number of genes. Furthermore, qRT-PCR tests demonstrated that despite inducing Smad3 phosphorylation, FLIL33 did not induce collagen gene transcription and even mildly attenuated TGF-ß-induced levels of collagen I and III mRNAs. We conclude that FLIL33 induces Smad3 phosphorylation through a TGF-ß-independent but TGF-ß receptor- and AP2- dependent mechanism and has limited downstream transcriptomic consequences.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Interleucina-33/metabolismo , Proteína Smad3/metabolismo , Adulto , Feminino , Fibroblastos/metabolismo , Fibrose/fisiopatologia , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Masculino , Fosforilação , Ligação Proteica , Transporte Proteico , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
3.
Nanomedicine ; 20: 102024, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176045

RESUMO

Therapeutic efficacy of nanoparticle-drug formulations for cancer applications is significantly impacted by the extent of intra-tumoral accumulation and tumor tissue penetration. We advanced the application of surface plasmon resonance to examine interfacial properties of various clinical and emerging nanoparticles related to tumor tissue penetration. We observed that amine-terminated or positively-charged dendrimers and liposomes bound strongly to tumor extracellular matrix (ECM) proteins, whereas hydroxyl/carboxyl-terminated dendrimers and PEGylated/neutrally-charged liposomes did not bind. In addition, poly(lactic-co-glycolic acid) (PLGA) nanoparticles formulated with cholic acid or F127 surfactants bound strongly to tumor ECM proteins, whereas nanoparticles formulated with poly(vinyl alcohol) did not bind. Unexpectedly, following blood serum incubation, this binding increased and particle transport in ex vivo tumor tissues reduced markedly. Finally, we characterized the protein corona on PLGA nanoparticles using quantitative proteomics. Through these studies, we identified valuable criteria for particle surface characteristics that are likely to mediate their tissue binding and tumor penetration.


Assuntos
Nanopartículas/química , Neoplasias/metabolismo , Ressonância de Plasmônio de Superfície , Animais , Transporte Biológico , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Dendrímeros/química , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Lipossomos , Camundongos Nus , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ligação Proteica , Coroa de Proteína/química , Propriedades de Superfície , Tensoativos/química
4.
J Biol Chem ; 292(52): 21653-21661, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29127199

RESUMO

Human mature IL-33 is a member of the IL-1 family and a potent regulator of immunity through its pro-T helper cell 2 activity. Its precursor form, full-length interleukin-33 (FLIL33), is an intranuclear protein in many cell types, including fibroblasts, and its intracellular levels can change in response to stimuli. However, the mechanisms controlling the nuclear localization of FLIL33 or its stability in cells are not understood. Here, we identified importin-5 (IPO5), a member of the importin family of nuclear transport proteins, as an intracellular binding partner of FLIL33. By overexpressing various FLIL33 protein segments and variants in primary human lung fibroblasts and HEK293T cells, we show that FLIL33, but not mature interleukin-33, physically interacts with IPO5 and that this interaction localizes to a cluster of charged amino acids (positions 46-56) but not to an adjacent segment (positions 61-67) in the FLIL33 N-terminal region. siRNA-mediated IPO5 knockdown in cell culture did not affect nuclear localization of FLIL33. However, the IPO5 knockdown significantly decreased the intracellular levels of overexpressed FLIL33, reversed by treatment with the 20S proteasome inhibitor bortezomib. Furthermore, FLIL33 variants deficient in IPO5 binding remained intranuclear and exhibited decreased levels, which were also restored by the bortezomib treatment. These results indicate that the interaction between FLIL33 and IPO5 is localized to a specific segment of the FLIL33 protein, is not required for nuclear localization of FLIL33, and protects FLIL33 from proteasome-dependent degradation.


Assuntos
Interleucina-33/metabolismo , beta Carioferinas/metabolismo , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Interleucina-33/genética , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteólise , beta Carioferinas/genética
5.
Nat Methods ; 4(11): 957-62, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17952089

RESUMO

Elucidating kinase-substrate relationships is critical for understanding how phosphorylation affects signal transduction and regulatory cascades. Using the alpha catalytic subunit of protein kinase CK2 (CK2alpha) as a paradigm, we developed an in-gel method to facilitate identification of physiologic kinase substrates. In this approach, the roles of kinase and substrate in a classic in-gel kinase assay are reversed. In the reverse in-gel kinase assay (RIKA), a kinase is copolymerized in a denaturing polyacrylamide gel used to resolve a tissue or cell protein extract. Restoration of kinase activity and substrate structure followed by an in situ kinase reaction and mass spectrometric analyses results in identification of potential kinase substrates. We demonstrate that this method can be used to profile both known and novel human and mouse substrates of CK2alpha and cAMP-dependent protein kinase (PKA). Using widely available straightforward technology, the RIKA has the potential to facilitate discovery of physiologic kinase substrates in any biological system.


Assuntos
Resinas Acrílicas/química , Eletroforese em Gel de Poliacrilamida/métodos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Animais , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Caseínas/química , Catálise , Extratos Celulares/química , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eletroforese em Gel Bidimensional/métodos , Humanos , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Masculino , Camundongos , Monoéster Fosfórico Hidrolases/química , Fosforilação , Prostaglandina-E Sintases , Desnaturação Proteica , Dobramento de Proteína , Reprodutibilidade dos Testes , Glândulas Seminais/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA