Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9028, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641673

RESUMO

The primary objective of the present study was to identify a subset of radiomic features extracted from primary tumor imaged by computed tomography of early-stage non-small cell lung cancer patients, which remain unaffected by variations in segmentation quality and in computed tomography image acquisition protocol. The robustness of these features to segmentation variations was assessed by analyzing the correlation of feature values extracted from lesion volumes delineated by two annotators. The robustness to variations in acquisition protocol was evaluated by examining the correlation of features extracted from high-dose and low-dose computed tomography scans, both of which were acquired for each patient as part of the stereotactic body radiotherapy planning process. Among 106 radiomic features considered, 21 were identified as robust. An analysis including univariate and multivariate assessments was subsequently conducted to estimate the predictive performance of these robust features on the outcome of early-stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. The univariate predictive analysis revealed that robust features demonstrated superior predictive potential compared to non-robust features. The multivariate analysis indicated that linear regression models built with robust features displayed greater generalization capabilities by outperforming other models in predicting the outcomes of an external validation dataset.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Radiômica , Tomografia Computadorizada por Raios X , Radiocirurgia/métodos
2.
Biomedicines ; 12(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38672146

RESUMO

PURPOSE: The accuracy of target delineation in radiation treatment planning of high-grade gliomas (HGGs) is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Magnetic resonance imaging (MRI) represents the standard imaging modality for delineation of gliomas with inherent limitations in accurately determining the microscopic extent of tumors. The purpose of this study was to assess the survival impact of multi-observer delineation variability of multiparametric MRI (mpMRI) and [18F]-FET PET/CT. MATERIALS AND METHODS: Thirty prospectively included patients with histologically confirmed HGGs underwent a PET/CT and mpMRI including diffusion-weighted imaging (DWI: b0, b1000, ADC), contrast-enhanced T1-weighted imaging (T1-Gado), T2-weighted fluid-attenuated inversion recovery (T2Flair), and perfusion-weighted imaging with computation of relative cerebral blood volume (rCBV) and K2 maps. Nine radiation oncologists delineated the PET/CT and MRI sequences. Spatial similarity (Dice similarity coefficient: DSC) was calculated between the readers for each sequence. Impact of the DSC on progression-free survival (PFS) and overall survival (OS) was assessed using Kaplan-Meier curves and the log-rank test. RESULTS: The highest DSC mean values were reached for morphological sequences, ranging from 0.71 +/- 0.18 to 0.84 +/- 0.09 for T2Flair and T1Gado, respectively, while metabolic volumes defined by PET/CT achieved a mean DSC of 0.75 +/- 0.11. rCBV variability (mean DSC0.32 +/- 0.20) significantly impacted PFS (p = 0.02) and OS (p = 0.002). CONCLUSIONS: Our data suggest that the T1-Gado and T2Flair sequences were the most reproducible sequences, followed by PET/CT. Reproducibility for functional sequences was low, but rCBV inter-reader similarity significantly impacted PFS and OS.

3.
Eur J Nucl Med Mol Imaging ; 51(4): 1097-1108, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37987783

RESUMO

PURPOSE: To develop machine learning models to predict regional and/or distant recurrence in patients with early-stage non-small cell lung cancer (ES-NSCLC) after stereotactic body radiation therapy (SBRT) using [18F]FDG PET/CT and CT radiomics combined with clinical and dosimetric parameters. METHODS: We retrospectively collected 464 patients (60% for training and 40% for testing) from University Hospital of Liège and 63 patients from University Hospital of Brest (external testing set) with ES-NSCLC treated with SBRT between 2010 and 2020 and who had undergone pretreatment [18F]FDG PET/CT and planning CT. Radiomic features were extracted using the PyRadiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Clinical, radiomic, and combined models were trained and tested using a neural network approach to predict regional and/or distant recurrence. RESULTS: In the training (n = 273) and testing sets (n = 191 and n = 63), the clinical model achieved moderate performances to predict regional and/or distant recurrence with C-statistics from 0.53 to 0.59 (95% CI, 0.41, 0.67). The radiomic (original_firstorder_Entropy, original_gldm_LowGrayLevelEmphasis and original_glcm_DifferenceAverage) model achieved higher predictive ability in the training set and kept the same performance in the testing sets, with C-statistics from 0.70 to 0.78 (95% CI, 0.63, 0.88) while the combined model performs moderately well with C-statistics from 0.50 to 0.62 (95% CI, 0.37, 0.69). CONCLUSION: Radiomic features extracted from pre-SBRT analog and digital [18F]FDG PET/CT outperform clinical parameters in the prediction of regional and/or distant recurrence and to discuss an adjuvant systemic treatment in ES-NSCLC. Prospective validation of our models should now be carried out.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Radiocirurgia/métodos , Estudos Retrospectivos , Radiômica
4.
Int J Radiat Oncol Biol Phys ; 118(4): 952-962, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37875246

RESUMO

PURPOSE: The aim of this work was to compare anatomic and functional dose-volume parameters as predictors of acute radiation-induced lung toxicity (RILT) in patients with lung tumors treated with stereotactic body radiation therapy. METHODS AND MATERIALS: Fifty-nine patients treated with stereotactic body radiation therapy were prospectively included. All patients underwent gallium 68 lung perfusion positron emission tomography (PET)/computed tomography (CT) imaging before treatment. Mean lung dose (MLD) and volumes receiving x Gy (VxGy, 5-30 Gy) were calculated in 5 lung volumes: the conventional anatomic volume (AV) delineated on CT images, 3 lung functional volumes (FVs) defined on lung perfusion PET imaging (FV50%, FV70%, and FV90%; ie, the minimal volume containing 50%, 70%, and 90% of the total activity within the AV), and a low FV (LFV; LFV = AV - FV90%). The primary endpoint of this analysis was grade ≥2 acute RILT at 3 months as assessed with National Cancer Institute Common Terminology Criteria for Adverse Events version 5. Dose-volume parameters in patients with and without acute RILT were compared. Receiver operating characteristic curves assessing the ability of dose-volume parameters to discriminate between patients with and without acute RILT were generated, and area under the curve (AUC) values were calculated. RESULTS: Of the 59 patients, 10 (17%) had grade ≥2 acute RILT. The MLD and the VxGy in the AV and LFV were not statistically different between patients with and without acute RILT (P > .05). All functional parameters were significantly higher in acute RILT patients (P < .05). AUC values (95% CI) for MLD AV, LFV, FV50%, FV70%, and FV90% were 0.66 (0.46-0.85), 0.60 (0.39-0.80), 0.77 (0.63-0.91), 0.77 (0.64-0.91), and 0.75 (0.58-0.91), respectively. AUC values for V20Gy AV, LFV, FV50%, FV70%, and FV90% were 0.65 (0.44-0.87), 0.64 (0.46-0.83), 0.82 (0.69-0.95), 0.81 (0.67-0.96), and 0.75 (0.57-0.94), respectively. CONCLUSIONS: The predictive value of PET perfusion-based functional parameters outperforms the standard CT-based dose-volume parameters for the risk of grade ≥2 acute RILT. Functional parameters could be useful for guiding radiation therapy planning and reducing the risk of acute RILT.


Assuntos
Síndrome Aguda da Radiação , Carcinoma Pulmonar de Células não Pequenas , Gálio , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pneumonite por Radiação/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Perfusão , Gálio/uso terapêutico
5.
Cancers (Basel) ; 15(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37046827

RESUMO

BACKGROUND: Gallium-68 lung perfusion PET/CT is an emerging imaging modality for the assessment of regional lung function, especially to optimise radiotherapy (RT) planning. A key step of lung functional avoidance RT is the delineation of lung functional volumes (LFVs) to be integrated into radiation plans. However, there is currently no consistent and reproducible delineation method for LFVs. The aim of this study was to develop and evaluate an automated delineation threshold method based on total lung function for LFVs delineation with Gallium-68 MAA lung PET/CT imaging. MATERIAL AND METHOD: Patients prospectively enrolled in the PEGASUS trial-a pilot study assessing the feasibility of lung functional avoidance using perfusion PET/CT imaging for lung stereotactic body radiotherapy (SBRT) of primary or secondary lesion-were analysed. Patients underwent lung perfusion MAA-68Ga PET/CT imaging and pulmonary function tests (PFTs) as part of pre-treatment evaluation. LFVs were delineated using two methods: the commonly used relative to the maximal pixel value threshold method (pmax threshold method, X%pmax volumes) and a new approach based on a relative to whole lung function threshold method (WLF threshold method, FVX% volumes) using a dedicated iterative algorithm. For both methods, LFVs were expressed in terms of % of the anatomical lung volume (AV) and of % of the total lung activity. Functional volumes were compared for patients with normal PFTs and pre-existing airway disease. RESULTS: 60 patients were analysed. Among the 48 patients who had PFTs, 31 (65%) had pre-existing lung disease. The pmax and WLF threshold methods clearly provided different functional volumes with a wide range of relative lung function for a given pmax volume, and conversely, a wide range of corresponding pmax values for a given WLF volume. The WLF threshold method provided more reliable and consistent volumes with much lower dispersion of LFVs as compared to the pmax method, especially in patients with normal PFTs. CONCLUSIONS: We developed a relative to whole lung function threshold segmentation method to delineate lung functional volumes on perfusion PET/CT imaging. The automated algorithm allows for reproducible contouring. This new approach, relatively unaffected by the presence of hot spots, provides reliable and consistent functional volumes, and is clinically meaningful for clinicians.

6.
Cancers (Basel) ; 15(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36980612

RESUMO

The aim of this study was to assess the feasibility of sparing functional lung areas by integration of pulmonary functional mapping guided by 68Ga-perfusion PET/CT imaging in lung SBRT planification. Sixty patients that planned to receive SBRT for primary or secondary lung tumors were prospectively enrolled. Lung functional volumes were defined as the minimal volume containing 50% (FV50%), 70% (FV70%) and 90% (FV90%) of the total activity within the anatomical volume. All patients had a treatment planning carried out in 2 stages: an anatomical planning blinded to the PET results and then a functional planning respecting the standard constraints but also incorporating "lung functional volume" constraints. The mean lung dose (MLD) in functional volumes and the percentage of lung volumes receiving xGy (VxGy) within the lung functional volumes using both plans were calculated and compared. SBRT planning optimized to spare lung functional regions led to a significant reduction (p < 0.0001) of the MLD and V5 to V20 Gy in all functional volumes. Median relative difference of the MLD in the FV50%, FV70% and FV90% was -8.0% (-43.0 to 1.2%), -7.1% (-34.3 to 1.2%) and -5.7% (-22.3 to 4.4%), respectively. Median relative differences for VxGy ranged from -12.5% to -9.2% in the FV50%, -11.3% to -7.2% in the FV70% and -8.0% to -5.3% in the FV90%. This study shows the feasibility of significantly decreasing the doses delivered to the lung functional volumes using 68Ga-perfusion PET/CT while still respecting target volume coverage and doses to other organs at risk.

7.
Diagnostics (Basel) ; 13(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36832204

RESUMO

Lung stereotactic body radiotherapy (SBRT) is increasingly proposed, especially for patients with poor lung function who are not eligible for surgery. However, radiation-induced lung injury remains a significant treatment-related adverse event in these patients. Moreover, for patients with very severe COPD, we have very few data about the safety of SBRT for lung cancer. We present the case of a female with very severe chronic obstructive pulmonary disease (COPD) with a forced expiratory volume in one second (FEV1) of 0.23 L (11%), for whom a localized lung tumor was found. Lung SBRT was the only possible treatment. It was allowed and safely performed, based on a pre-therapeutic evaluation of regional lung function with Gallium-68 perfusion lung positron emission tomography combined with computed tomography (PET/CT). This is the first case report to highlight the potential use of a Gallium-68 perfusion PET/CT in order to safely select patients with very severe COPD who can benefit from SBRT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA