Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 15: 1169211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529008

RESUMO

Introduction: Damage to retinal pigment epithelium (RPE) cells caused by oxidative stress is closely related to the pathogenesis of several blinding retinal diseases, such as age-related macular degeneration (AMD), retinitis pigmentosa, and other inherited retinal degenerative conditions. However, the mechanisms of this process are poorly understood. Hence, the goal of this study was to investigate hydrogen peroxide (H2O2)-induced oxidative damage and protective role of peroxiredoxin 6 (PRDX6) protein via EGFR/ERK signaling pathway in RPE cells. Methods: Cells from a human RPE cell line (ARPE-19 cells) were treated with H2O2, and then cell viability was assessed using the methyl thiazolyl tetrazolium assay. Cell death and reactive oxygen species (ROS) were detected by flow cytometry. The levels of PRDX6, epidermal growth factor receptor (EGFR), P38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) were detected by Western blot assay. PRDX6 and EGFR were also detected via immunofluorescence staining. Results: Our results show that H2O2 inhibited cell viability, induced cell death, and increased ROS levels in ARPE-19 cells. It was also found that H2O2 decreased the levels of PRDX6, EGFR, and phosphorylated ERK but increased the levels of phosphorylated P38MAPK and JNK. PRDX6 overexpression was found to attenuate H2O2-induced inhibition of cell viability and increased cell death and ROS production in ARPE-19 cells. PRDX6 overexpression also increased the expression of EGFR and alleviated the H2O2-induced decrease in EGFR and phosphorylated ERK. Moreover, inhibition of epidermal growth factor-induced EGFR and ERK signaling in oxidative stress was partially blocked by PRDX6 overexpression. Discussion: Our findings indicate that PRDX6 overexpression protects RPE cells from oxidative stress damage caused by decreasing ROS production and partially blocking the inhibition of the EGFR/ERK signaling pathway induced by oxidative stress. Therefore, PRDX6 shows promise as a therapeutic target for the prevention of RPE cell damage caused by oxidative stress associated with retinal diseases.

2.
Sci Adv ; 8(50): eadd7945, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525490

RESUMO

The intracellular bacterial pathogen Legionella pneumophila uses hundreds of effector proteins to manipulate multiple processes of the host cells to establish a replicative niche known as Legionella-containing vacuole (LCV). Biogenesis of the LCV has been known to depend on host small guanosine triphosphatases (GTPases), but whether bacterial effector GTPases are also involved remains unknown. Here, we show that an ankyrin repeat containing effector LegA15 localizes directly in host lipid droplets (LDs), leading to Golgi apparatus fragmentation of the host cells by hijacking the host vesicular transport factor p115. LegA15 is a GTPase with a unique catalytic mechanism, unlike any eukaryotic small GTPases. Moreover, the effector LegA15 co-opts p115 to modulate homeostasis of the host LDs in its GTPase-dependent manner. Together, our data reveal that an atypical GTPase effector regulates the host LDs through impeding the vesicle secretion system of the host cells for intracellular life cycle of Legionella.


Assuntos
Legionella , Legionella/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno
3.
Commun Biol ; 5(1): 1228, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369270

RESUMO

Bacterial cell division is a complex, dynamic process that requires multiple protein components to orchestrate its progression. Many division proteins are highly conserved across bacterial species alluding to a common, basic mechanism. Central to division is a transmembrane trimeric complex involving DivIB, DivIC and FtsL in Gram-positives. Here, we show a distinct, essential role for DivIC in division and survival of Staphylococcus aureus. DivIC spatially regulates peptidoglycan synthesis, and consequently cell wall architecture, by influencing the recruitment to the division septum of the major peptidoglycan synthetases PBP2 and FtsW. Both the function of DivIC and its recruitment to the division site depend on its extracellular domain, which interacts with the cell wall via binding to wall teichoic acids. DivIC facilitates the spatial and temporal coordination of peptidoglycan synthesis with the developing architecture of the septum during cell division. A better understanding of the cell division mechanisms in S. aureus and other pathogenic microorganisms can provide possibilities for the development of new, more effective treatments for bacterial infections.


Assuntos
Peptidoglicano , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , Divisão Celular , Parede Celular/metabolismo
4.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1110-1119, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048151

RESUMO

The pathogen Legionella pneumophila, which is the causative agent of Legionnaires' disease, secrets hundreds of effectors into host cells via its Dot/Icm secretion system to subvert host-cell pathways during pathogenesis. VipF, a conserved core effector among Legionella species, is a putative acetyltransferase, but its structure and catalytic mechanism remain unknown. Here, three crystal structures of VipF in complex with its cofactor acetyl-CoA and/or a substrate are reported. The two GNAT-like domains of VipF are connected as two wings by two ß-strands to form a U-shape. Both domains bind acetyl-CoA or CoA, but only in the C-terminal domain does the molecule extend to the bottom of the U-shaped groove as required for an active transferase reaction; the molecule in the N-terminal domain folds back on itself. Interestingly, when chloramphenicol, a putative substrate, binds in the pocket of the central U-shaped groove adjacent to the N-terminal domain, VipF remains in an open conformation. Moreover, mutations in the central U-shaped groove, including Glu129 and Asp251, largely impaired the acetyltransferase activity of VipF, suggesting a unique enzymatic mechanism for the Legionella effector VipF.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Acetilcoenzima A/metabolismo , Acetilação , Acetiltransferases , Proteínas de Bactérias/química , Legionella/metabolismo , Legionella pneumophila/química , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Doença dos Legionários/genética
5.
Front Microbiol ; 13: 820089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558126

RESUMO

In Streptococcus mutans, we find that the histidine kinase WalK possesses the longest C-terminal tail (CTT) among all 14 TCSs, and this tail plays a key role in the interaction of WalK with its response regulator WalR. We demonstrate that the intrinsically disordered CTT is characterized by a conserved tryptophan residue surrounded by acidic amino acids. Mutation in the tryptophan not only disrupts the stable interaction, but also impairs the efficient phosphotransferase and phosphatase activities of WalRK. In addition, the tryptophan is important for WalK to compete with DNA containing a WalR binding motif for the WalR interaction. We further show that the tryptophan is important for in vivo transcriptional regulation and bacterial biofilm formation by S. mutans. Moreover, Staphylococcus aureus WalK also has a characteristic CTT, albeit relatively shorter, with a conserved W-acidic motif, that is required for the WalRK interaction in vitro. Together, these data reveal that the W-acidic motif of WalK is indispensable for its interaction with WalR, thereby playing a key role in the WalRK-dependent signal transduction, transcriptional regulation and biofilm formation.

6.
Mol Cell ; 82(10): 1821-1835.e6, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35381197

RESUMO

GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.


Assuntos
Glutaminase , Glutamina , Apoptose , Asparagina/genética , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Espécies Reativas de Oxigênio
7.
Mol Psychiatry ; 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338313

RESUMO

Astrocyte aerobic glycolysis provides vital trophic support for central nervous system neurons. However, whether and how astrocytic metabolic dysregulation contributes to neuronal dysfunction in intellectual disability (ID) remain unclear. Here, we demonstrate a causal role for an ID-associated SNX27 mutation (R198W) in cognitive deficits involving reshaping astrocytic metabolism. We generated SNX27R196W (equivalent to human R198W) knock-in mice and found that they displayed deficits in synaptic function and learning behaviors. SNX27R196W resulted in attenuated astrocytic glucose uptake via GLUT1, leading to reduced lactate production and a switch from homeostatic to reactive astrocytes. Importantly, lactate supplementation or a ketogenic diet restored neuronal oxidative phosphorylation and reversed cognitive deficits in SNX27R196W mice. In summary, we illustrate a key role for astrocytic SNX27 in maintaining glucose supply and glycolysis and reveal that altered astrocytic metabolism disrupts the astrocyte-neuron interaction, which contributes to ID. Our work also suggests a feasible strategy for treating ID by restoring astrocytic metabolic function.

8.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716264

RESUMO

Bacterial cell wall peptidoglycan is essential, maintaining both cellular integrity and morphology, in the face of internal turgor pressure. Peptidoglycan synthesis is important, as it is targeted by cell wall antibiotics, including methicillin and vancomycin. Here, we have used the major human pathogen Staphylococcus aureus to elucidate both the cell wall dynamic processes essential for growth (life) and the bactericidal effects of cell wall antibiotics (death) based on the principle of coordinated peptidoglycan synthesis and hydrolysis. The death of S. aureus due to depletion of the essential, two-component and positive regulatory system for peptidoglycan hydrolase activity (WalKR) is prevented by addition of otherwise bactericidal cell wall antibiotics, resulting in stasis. In contrast, cell wall antibiotics kill via the activity of peptidoglycan hydrolases in the absence of concomitant synthesis. Both methicillin and vancomycin treatment lead to the appearance of perforating holes throughout the cell wall due to peptidoglycan hydrolases. Methicillin alone also results in plasmolysis and misshapen septa with the involvement of the major peptidoglycan hydrolase Atl, a process that is inhibited by vancomycin. The bactericidal effect of vancomycin involves the peptidoglycan hydrolase SagB. In the presence of cell wall antibiotics, the inhibition of peptidoglycan hydrolase activity using the inhibitor complestatin results in reduced killing, while, conversely, the deregulation of hydrolase activity via loss of wall teichoic acids increases the death rate. For S. aureus, the independent regulation of cell wall synthesis and hydrolysis can lead to cell growth, death, or stasis, with implications for the development of new control regimes for this important pathogen.


Assuntos
Parede Celular/fisiologia , Peptidoglicano/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Homeostase , Meticilina/farmacologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/metabolismo , Vancomicina/farmacologia
9.
Bioinformatics ; 37(17): 2682-2690, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33677505

RESUMO

MOTIVATION: Transcriptional surges generated by two-component systems (TCSs) have been observed experimentally in various bacteria. Suppression of the transcriptional surge may reduce the activity, virulence and drug resistance of bacteria. In order to investigate the general mechanisms, we use a PhoP/PhoQ TCS as a model system to derive a comprehensive mathematical modeling that governs the surge. PhoP is a response regulator, which serves as a transcription factor under a phosphorylation-dependent modulation by PhoQ, a histidine kinase. RESULTS: Our model reveals two major signaling pathways to modulate the phosphorylated PhoP (P-PhoP) level, one of which promotes the generation of P-PhoP, while the other depresses the level of P-PhoP. The competition between the P-PhoP-promoting and the P-PhoP-depressing pathways determines the generation of the P-PhoP surge. Furthermore, besides PhoQ, PhoP is also a bifunctional modulator that contributes to the dynamic control of P-PhoP state, leading to a biphasic regulation of the surge by the gene feedback loop. In summary, the mechanisms derived from the PhoP/PhoQ system for the transcriptional surges provide a better understanding on such a sophisticated signal transduction system and aid to develop new antimicrobial strategies targeting TCSs. AVAILABILITY AND IMPLEMENTATION: https://github.com/jianweishuai/TCS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
Microbes Infect ; 23(4-5): 104794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571674

RESUMO

To create an intracellular niche permissive for its replication, Legionella pneumophila uses hundreds of effectors to target a wide variety of host proteins and manipulate specific host processes such as immune response, and vesicle trafficking. To avoid unwanted disruption of host physiology, this pathogen also imposes precise control of its virulence by the use of effectors called metaeffectors to regulate the activity of other effectors. A number of effector/metaeffector pairs with distinct regulatory mechanisms have been characterized, including abrogation of protein modifications, direct modification of the effector and direct binding to the catalytic pocket of the cognate effector. Recently, MesI (Lpg2505) was found to be a metaeffector of SidI, an effector involved in inhibiting host protein translation. Here we demonstrate that MesI functions by inhibiting the activity of SidI via direct protein-protein interactions. We show that this interaction occurs within L. pneumophila and thus interferes with the translocation of SidI into host cells. We also solved the structure of MesI, which suggests that this protein does not have an active site similar to any known enzymes. Analysis of deletion mutants allowed the identification of regions within SidI and MesI that are important for their interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Legionella pneumophila/metabolismo , Doença dos Legionários/microbiologia , Animais , Proteínas de Bactérias/genética , Camundongos , Ligação Proteica , Biossíntese de Proteínas
11.
Sci Signal ; 13(643)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753477

RESUMO

Two-component systems (TCSs), which consist of a histidine kinase (HK) sensor and a response regulator (RR), are important for bacteria to quickly sense and respond to various environmental signals. HKs and RRs typically function as a cognate pair, interacting only with one another to transduce signaling. Precise signal transduction in a TCS depends on the specific interactions between the receiver domain (RD) of the RR and the dimerization and histidine phosphorylation domain (DHp) of the HK. Here, we determined the complex structure of KdpDE, a TCS consisting of the HK KdpD and the RR KdpE, which is responsible for K+ homeostasis. Both the RD and the DNA binding domain (DBD) of KdpE interacted with KdpD. Although the RD of KdpE and the DHp of KdpD contributed to binding specificity, the DBD mediated a distinct interaction with the catalytic ATP-binding (CA) domain of KdpD that was indispensable for KdpDE-mediated signal transduction. Moreover, the DBD-CA interface largely overlapped with that of the DBD-DNA complex, leading to competition between KdpD and its target promoter in a KdpE phosphorylation-dependent manner. In addition, the extended C-terminal tail of the CA domain was critical for stabilizing the interaction with KdpDE and for signal transduction. Together, these data provide a molecular basis for specific KdpD and KdpE interactions that play key roles in efficient signal transduction and transcriptional regulation by this TCS.


Assuntos
Proteínas de Escherichia coli/química , Potássio/metabolismo , Domínios Proteicos , Proteínas Quinases/química , Transdução de Sinais , Transativadores/química , Sítios de Ligação/genética , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Histidina Quinase/metabolismo , Modelos Moleculares , Mutação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transativadores/genética , Transativadores/metabolismo
12.
J Basic Microbiol ; 59(9): 950-959, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31339578

RESUMO

Two-component signal transduction systems (TCSs) play a major role in adaption and survival of microorganisms in a dynamic and sometimes dangerous environment. YycFG is an essential TCS for many Gram-positive bacteria, such as Bacillus subtilis, which regulates many important biological processes. However, its functional essentiality remains largely unknown. Here, we report several YycFG interacting proteins through coimmunoprecipitation (Co-IP) and mass spectrometry (MS) analyses. We engineered the B. subtilis genome by a knock-in approach to express YycG with a C-terminal Flag and YycF with an N-terminal HA tag. Immunoprecipitated fractions using anti-Flag or anti-HA agarose were subjected to MS analyses. A total of 41 YycG interacting proteins and four YycF interacting proteins were identified, most of which are involved in cellular metabolic processes, including cell wall synthesis and modification. The interactions of YycG with AsnB and FabL, as examples, were further validated in vitro. This study provided a clue that YycFG may be directly involved in regulation of bacterial central metabolic pathways.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Técnicas de Introdução de Genes , Redes Reguladoras de Genes , Histidina Quinase/genética , Ligação Proteica , Transdução de Sinais/genética
13.
Microbiology (Reading) ; 163(11): 1637-1640, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29034863

RESUMO

Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1H and 13C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.


Assuntos
Comamonas/genética , Família Multigênica/genética , Antígenos O/química , Antígenos O/genética , Proteínas de Bactérias/química , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Comamonas/química , Comamonas/enzimologia , Dissacarídeos/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glucose , Antígenos O/isolamento & purificação , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Ramnose
14.
Acta Crystallogr D Struct Biol ; 73(Pt 10): 793-803, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994408

RESUMO

Two-component systems (TCSs) are key elements in bacterial signal transduction in response to environmental stresses. TCSs generally consist of sensor histidine kinases (SKs) and their cognate response regulators (RRs). Many SKs exhibit autokinase, phosphoryltransferase and phosphatase activities, which regulate RR activity through a phosphorylation and dephosphorylation cycle. However, how SKs perform different enzymatic activities is poorly understood. Here, several crystal structures of the minimal catalytic region of WalK, an essential SK from Lactobacillus plantarum that shares 60% sequence identity with its homologue VicK from Streptococcus mutans, are presented. WalK adopts an asymmetrical closed structure in the presence of ATP or ADP, in which one of the CA domains is positioned close to the DHp domain, thus leading both the ß- and γ-phosphates of ATP/ADP to form hydrogen bonds to the ℇ- but not the δ-nitrogen of the phosphorylatable histidine in the DHp domain. In addition, the DHp domain in the ATP/ADP-bound state has a 25.7° asymmetrical helical bending coordinated with the repositioning of the CA domain; these processes are mutually exclusive and alternate in response to helicity changes that are possibly regulated by upstream signals. In the absence of ATP or ADP, however, WalK adopts a completely symmetric open structure with its DHp domain centred between two outward-reaching CA domains. In summary, these structures of WalK reveal the intrinsic dynamic properties of an SK structure as a molecular basis for multifunctionality.


Assuntos
Proteínas de Bactérias/química , Histidina Quinase/química , Lactobacillus plantarum/enzimologia , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Histidina Quinase/metabolismo , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Transdução de Sinais , Streptococcus mutans/química , Streptococcus mutans/enzimologia , Streptococcus mutans/metabolismo
15.
Int J Ophthalmol ; 10(4): 507-514, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28503420

RESUMO

AIM: To investigate the cross-talk between oxidative stress and the epidermal growth factor receptor (EGFR)/AKT signaling pathway in retinal pigment epithelial (RPE) cells. METHODS: Human RPE cell lines (ARPE-19 cell) were treated with different doses of epidermal growth factor (EGF) and hydrogen peroxide (H2O2). Cell viability was determined by a methyl thiazolyl tetrazolium assay. Cell proliferation was examined by a bromodeoxyuridine (BrdU) incorporation assay. EGFR/AKT signaling was detected by Western blot. EGFR localization was also detected by immunofluorescence. In addition, EGFR/AKT signaling was intervened upon by EGFR inhibitor (erlotinib), PI3K inhibitor (A66) and AKT inhibitor (MK-2206), respectively. H2O2-induced oxidative stress was blocked by antioxidant N-acetylcysteine (NAC). RESULTS: EGF treatment increased ARPE-19 cell viability and proliferation through inducing phosphorylation of EGFR and AKT. H2O2 inhibited ARPE-19 cell viability and proliferation and also suppressed EGF-stimulated increase of RPE cell viability and proliferation by affecting the EGFR/AKT signaling pathway. EGFR inhibitor erlotinib blocked EGF-induced phosphorylation of EGFR and AKT, while A66 and MK-2206 only blocked EGF-induced phosphorylation of AKT. EGF-induced phosphorylation and endocytosis of EGFR were also affected by H2O2 treatment. In addition, antioxidant NAC attenuated H2O2-induced inhibition of ARPE-19 cell viability through alleviating reduction of EGFR, and phosphorylated and total AKT proteins. CONCLUSION: Oxidative stress affects RPE cell viability and proliferation through interfering with the EGFR/AKT signaling pathway. The EGFR/AKT signaling pathway may be an important target in oxidative stress-induced RPE cell dysfunction.

16.
Structure ; 25(4): 641-649.e3, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380339

RESUMO

The NatB N-terminal acetyltransferase specifically acetylates the N-terminal group of substrate protein peptides starting with Met-Asp/Glu/Asn/Gln. How NatB recognizes and acetylates these substrates remains unknown. Here, we report crystal structures of a NatB holoenzyme from Candida albicans in the presence of its co-factor CoA and substrate peptides. The auxiliary subunit Naa25 of NatB forms a horseshoe-like deck to hold specifically its catalytic subunit Naa20. The first two amino acids Met and Asp of a substrate peptide mediate the major interactions with the active site in the Naa20 subunit. The hydrogen bonds between the substrate Asp and pocket residues of Naa20 are essential to determine the NatB substrate specificity. Moreover, a hydrogen bond between the amino group of the substrate Met and a carbonyl group in the Naa20 active site directly anchors the substrate toward acetyl-CoA. Together, these structures define a unique molecular mechanism of specific N-terminal acetylation acted by NatB.


Assuntos
Candida albicans/enzimologia , Acetiltransferase N-Terminal B/química , Acetiltransferase N-Terminal B/metabolismo , Acetilação , Sítios de Ligação , Candida albicans/química , Domínio Catalítico , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Especificidade por Substrato
18.
Nat Commun ; 8: 13732, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28054552

RESUMO

It is well known that c-Src has important roles in tumorigenesis. However, it remains unclear whether c-Src contributes to metabolic reprogramming. Here we find that c-Src can interact with and phosphorylate hexokinases HK1 and HK2, the rate-limiting enzymes in glycolysis. Tyrosine phosphorylation dramatically increases their catalytic activity and thus enhances glycolysis. Mechanistically, c-Src phosphorylation of HK1 at Tyr732 robustly decreases its Km and increases its Vmax by disrupting its dimer formation. Mutation in c-Src phosphorylation site of either HK1 or HK2 remarkably abrogates the stimulating effects of c-Src on glycolysis, cell proliferation, migration, invasion, tumorigenesis and metastasis. Due to its lower Km for glucose, HK1 rather than HK2 is required for tumour cell survival when glucose is scarce. Importantly, HK1-Y732 phosphorylation level remarkably correlates with the incidence and metastasis of various clinical cancers and may serve as a marker to predict metastasis risk of primary cancers.


Assuntos
Carcinogênese , Hexoquinase/metabolismo , Metástase Neoplásica , Neoplasias/patologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ativação Enzimática , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glicólise , Xenoenxertos , Humanos , Cinética , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Ligação Proteica , Tirosina/metabolismo
19.
PLoS One ; 11(11): e0166386, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27846303

RESUMO

Abnormal survival of retinal pigment epithelium (RPE) cells contributes to the pathogenesis of proliferative vitreoretinopathy (PVR), a sight-threatening disease. In this study, we explored the effect of the anti-rheumatic agent auranofin (AF) on RPE cell survival and studied the underlying signaling mechanisms in vitro. Our results showed that AF inhibited ARPE-19 cell survival in a dose and time-dependent manner. Application of AF induced several effects: a significant decrease in total epidermal growth factor receptor (EGFR) and an increase in phosphorylated EGFR and mitogen-activated protein kinase (MAPK), including extracellular signal-regulated kinase (ERK), P38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), c-Jun, mitogen activated protein kinase activated protein kinase 2(MAPKAPK2), and heat shock protein 27 (HSP27). AF also inhibited epidermal growth factor (EGF)-dependent cell proliferation and migration through affecting EGFR/MAPK signaling. The antioxidant N-acetylcysteine (NAC) blocked the AF-induced increase of reactive oxygen species (ROS) production, the reduction of total EGFR, and the phosphorylation of multiple nodes in EGFR/MAPK signaling pathway. P38MAPK inhibitor SB203580, but not inhibitors of EGFR (erlotinib), ERK (FR180204) and JNK (SP600125), suppressed AF-induced phosphorylation of EGFR/p38MAPK/MAPKAPK2/Hsp27. In conclusion, the ROS-dependent phosphorylation of EGFR/MAPK is an important signaling pathway for AF-induced inhibition of RPE cell survival, and AF may have the potential for treatment of abnormal survival of RPE cells in PVR.


Assuntos
Auranofina/administração & dosagem , Receptores ErbB/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Vitreorretinopatia Proliferativa/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Vitreorretinopatia Proliferativa/genética , Vitreorretinopatia Proliferativa/patologia
20.
Genome Announc ; 4(6)2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27811093

RESUMO

A Gram-negative bacterial strain, Comamonas aquatica CJG, absorbs low-density lipoprotein but not high-density lipoprotein in serum. Here, we report its draft genomic sequence of 3,764,434 bp, containing total 3,425 genes, 27% of which encode proteins for metabolism and energy conversion, and it is 30% identical to the genome of Comamonas testosteroni.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA