Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5862, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041166

RESUMO

Guillain-Barré syndrome (GBS) is an autoimmune disorder wherein the composition and gene expression patterns of peripheral blood immune cells change significantly. It is triggered by antigens with similar epitopes to Schwann cells that stimulate a maladaptive immune response against peripheral nerves. However, an atlas for peripheral blood immune cells in patients with GBS has not yet been constructed. This is a monocentric, prospective study. We collected 5 acute inflammatory demyelinating polyneuropathy (AIDP) patients and 3 healthy controls hospitalized in the First Affiliated Hospital of Harbin Medical University from December 2020 to May 2021, 3 AIDP patients were in the peak stage and 2 were in the convalescent stage. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from these patients. Furthermore, we performed cell clustering, cell annotation, cell-cell communication, differentially expressed genes (DEGs) identification and pseudotime trajectory analysis. Our study identified a novel clonally expanded CD14+ CD163+ monocyte subtype in the peripheral blood of patients with AIDP, and it was enriched in cellular response to IL1 and chemokine signaling pathways. Furthermore, we observed increased IL1ß-IL1R2 cell-cell communication between CD14+ and CD16+ monocytes. In short, by analyzing the single-cell landscape of the PBMCs in patients with AIDP we hope to widen our understanding of the composition of peripheral immune cells in patients with GBS and provide a theoretical basis for future studies.


Assuntos
Síndrome de Guillain-Barré , Humanos , Leucócitos Mononucleares , Monócitos , Estudos Prospectivos , Receptores Tipo II de Interleucina-1 , Análise de Célula Única
2.
Free Radic Biol Med ; 195: 343-358, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36587923

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a severe neurodegenerative disorder that progressively destroys cognitive skills. Exploring the mechanism underlying autophagic clearance of phosphorylated tau (p-Tau) contributes to developing novel therapeutic strategies for AD. METHODS: SH-SY5Y and HT22 cells were treated with Aß1-42 to establish an in vitro model of AD. Cell viability was examined using CCK-8. TUNEL staining was applied to evaluate cell apoptosis. LC3 puncta was examined by IF staining. m6A modification level was evaluated through MeRIP. RNA pull-down and RIP assays were used for analyzing the interaction between IGF2BP1 and STUB1 transcripts. The binding of KDM1A to the promoter of METTL3 was confirmed by ChIP assays. APP/PS1 transgenic mice were used as an in vivo model of AD. Cognitive skills of mice were evaluated with the Morris water maze. Hippocampal damage and Aß deposition were detected through H&E and IHC staining. RESULTS: Dysregulated levels of autophagy, p-Tau and m6A was observed in an in vitro model of AD. Overexpression of METTL3 or STUB1 enhanced autophagy but reduced p-Tau level in Aß1-42-treated cells. METTL3 stabilized STUB1 mRNA through the m6A-IGF2BP1-dependent mechanism and naturally promoted STUB1 expression, thereby enhancing autophagic p-Tau clearance in Aß1-42-treated cells. Overexpression of KDM1A enhanced autophagy, m6A modification and autophagic p-Tau clearance in Aß1-42-treated cells. KDM1A-mediated upregulation of METTL3 promoted autophagic p-Tau clearance and ameliorated Alzheimer's disease both in vitro and in vivo. CONCLUSION: KDM1A-mediated upregulation of METTL3 enhances autophagic clearance of p-Tau through m6A-dependent regulation of STUB1, thus ameliorating Alzheimer's disease. Our study provides novel mechanistic insights into AD pathogenesis and potential drug targets for AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Regulação para Cima , Camundongos Transgênicos , Autofagia/genética , Ubiquitina-Proteína Ligases/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/uso terapêutico , Histona Desmetilases/genética
3.
J Neurochem ; 163(6): 500-516, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35997641

RESUMO

Ischemic stroke is a major global health issue. Ischemia and subsequent reperfusion results in stroke-related brain injury. Previous studies have demonstrated that nuclear-enriched abundant transcript 1 (NEATa and early growth response 1 (EGR1) are involved in ischemia reperfusion (IR) injury). In this study, we aimed to explore the roles of NEAT1/EGR1 axis as well as its downstream effector RNA binding motif protein 25 (RBM25) in cerebral IR injury. Oxygen-glucose deprivation/reperfusion (OGD/R) and middle cerebral artery occlusion (MCAO) were used to establish in vitro and in vivo models of cerebral IR injury, respectively. According to our data, NEAT1, EGR1, and RBM25 levels were elevated in OGD/R-exposed SK-N-SH and SH-SY5Y cells and cerebral cortex of MCAO mice. NEAT1, EGR1, or RBM25 knockdown effectively reduced infarct volumes and apoptosis, and improved neurological function. Mechanistically, NEAT1 directly interacted with EGR1, which restrained WW domain containing E3 ubiquitin protein ligase 1 (WWP1)-mediated ubiquitination of EGR1 and subsequently caused EGR1 accumulation. EGR1 bound to RBM25 promoter and transcriptionally activated RBM25. Rescue experiments indicated that RBM25 overexpression abolished the therapeutic effects of NEAT1 knockdown. In conclusion, this work identified a novel NEAT1/EGR1/RBM25 axis in potentiating brain injury after IR insults, suggesting a potential therapeutic target for ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Neuroblastoma , RNA Longo não Codificante , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média , Oxigênio/metabolismo , Apoptose/genética , Glucose/metabolismo , Motivos de Ligação ao RNA , Isquemia Encefálica/metabolismo , MicroRNAs/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Brain Res ; 1785: 147884, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304105

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a major neurodegenerative disorder. The functions of lncRNA RMRP have been characterized mainly in various human cancers. However, the functional network of RMRP in AD progression remains unknown. METHODS: Human serum samples, AD transgenic (Tg) mice as well as SH-SY5Y cells were used in this study. The RNA expression patterns of RMRP, miR-3142 and TRIB3 were assessed by quantitative real-time PCR (qRT-PCR). Levels of apoptosis- or autophagy-associated biomarkers and TRIB3 level were evaluated using immunohistochemistry (IHC), western blotting or immunofluorescence assays, respectively. Bioinformatics methods and luciferase assays were used to predict and validate the interactions among RMRP, miR-3142, and TRIB3. Flow cytometry, TUNEL staining and EdU assays were used to examine the apoptosis and proliferation of neurons, respectively. RESULTS: The elevated RMRP and TRIB3 expressions and activation of autophagy were observed in AD. Knockdown of RMRP restrained neuronal apoptosis and autophagy activation in vitro and in vivo. Interestingly, TRIB3 overexpression reversed the biological effects of RMRP silencing on Aß1-42-induced cell apoptosis and autophagy. Further mechanistic analysis showed RMRP acted as a sponge of miR-3142 to elevate TRIB3 level. CONCLUSION: These data illustrated that knockdown of RMRP inhibited autophagy and apoptosis via regulating miR-3142/TRIB3 axis in AD, suggesting that inhibition of RMRP maybe a therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Doença de Alzheimer/genética , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Camundongos , MicroRNAs/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Front Immunol ; 12: 753929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950135

RESUMO

Background: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) mediated by autoimmunity. No objective clinical indicators are available for the diagnosis and prognosis of MS. Extracellular proteins are most glycosylated and likely to enter into the body fluid to serve as potential biomarkers. Our work will contribute to the in-depth study of the functions of extracellular proteins and the discovery of disease biomarkers. Methods: MS expression profiling data of the human brain was downloaded from the Gene Expression Omnibus (GEO). Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases. GO and KEGG were used to analyze the function and pathway of EP-DEGs. STRING, Cytoscape, MCODE and Cytohubba were used to construct a protein-protein interaction (PPI) network and screen key EP-DEGs. Key EP-DEGs levels were detected in the CSF of MS patients. ROC curve and survival analysis were used to evaluate the diagnostic and prognostic ability of key EP-DEGs. Results: We screened 133 EP-DEGs from DEGs. EP-DEGs were enriched in the collagen-containing extracellular matrix, signaling receptor activator activity, immune-related pathways, and PI3K-Akt signaling pathway. The PPI network of EP-DEGs had 85 nodes and 185 edges. We identified 4 key extracellular proteins IL17A, IL2, CD44, IGF1, and 16 extracellular proteins that interacted with IL17A. We clinically verified that IL17A levels decreased, but Del-1 and resolvinD1 levels increased. The diagnostic accuracy of Del-1 (AUC: 0.947) was superior to that of IgG (AUC: 0.740) with a sensitivity of 82.4% and a specificity of 100%. High Del-1 levels were significantly associated with better relapse-free and progression-free survival. Conclusion: IL17A, IL2, CD44, and IGF1 may be key extracellular proteins in the pathogenesis of MS. IL17A, Del-1, and resolvinD1 may co-regulate the development of MS and Del-1 is a potential biomarker of MS. We used bioinformatics methods to explore the biomarkers of MS and validated the results in clinical samples. The study provides a theoretical and experimental basis for revealing the pathogenesis of MS and improving the diagnosis and prognosis of MS.


Assuntos
Líquido Extracelular/química , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Proteínas/análise , Adulto , Biomarcadores , Química Encefálica , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/fisiologia , Moléculas de Adesão Celular/análise , Moléculas de Adesão Celular/fisiologia , Proteínas do Líquido Cefalorraquidiano/análise , Proteínas do Líquido Cefalorraquidiano/genética , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Cefaleia/genética , Cefaleia/metabolismo , Humanos , Interleucina-17/análise , Interleucina-17/fisiologia , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/metabolismo , Intervalo Livre de Progressão , Análise Serial de Proteínas , Mapas de Interação de Proteínas , Proteínas/genética , Sensibilidade e Especificidade
6.
Aging (Albany NY) ; 12(24): 25020-25034, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33203798

RESUMO

The pseudokinase Tribble 3 (TRIB3) is known as a regulator in cellular responses to a variety of stresses, such as glucose insufficiency and endoplasmic reticulum (ER) stress. TRIB3 is upregulated in various cancer tissues and is closely connected to the poor prognosis of patients. However, the underlying regulation and function of TRIB3 in glioblastoma (GBM) is still largely unknown. In this study, the upregulation of TRIB3 was confirmed both in primary specimens from GBM patients and in vitro with GBM cell lines. Overexpression of specific TRIB3 transcripts promoted cell growth and migration in vitro, while knockdown of TRIB3 expression exerted a repressive effect on these cellular processes. The growth-promoting effect of TRIB3 was also demonstrated in a xenograft mouse model. Mechanistic studies further revealed that TRIB3 was able to suppress autophagic flux and that this suppression was responsible for TRIB3 silencing-induced proliferation and migration of GBM cells. These findings indicate that the suppression of autophagic flux by TRIB3 drives the invasion and proliferation of GBM cells, thus suggesting that TRIB3 is a potential novel therapeutic target for the treatment of glioma.


Assuntos
Autofagia/genética , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/genética , Glioblastoma/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/genética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Técnicas de Silenciamento de Genes , Glioblastoma/patologia , Humanos , Pulmão , Camundongos , Camundongos Nus , Gradação de Tumores , Metástase Neoplásica , Transplante de Neoplasias , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo
7.
ACS Appl Mater Interfaces ; 10(32): 27454-27464, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30040375

RESUMO

The promising n-Si-based solar cell is constructed for the purpose of realizing hole- and electron-selective passivating contact, using a textured front indium tin oxide/MoO x structure and a planar rear a-SiO x/poly(Si(n+)) structure severally. The simple MoO x/n-Si heterojunction device obtains an efficiency of 16.7%. It is found that the accompanying ternary hybrid SiO x(Mo) interlayer (3.5-4.0 nm) is formed at the MoO x/n-Si boundary zone without preoxidation and is of amorphous structure, which is determined by a high-resolution transmission electron microscope with energy-dispersive X-ray spectroscopy mapping. The creation of lower-oxidation states in MoO x film indicates that the gradient distribution of SiO x with Mo element occurs within the interlayer, acting as a passivation of silicon substrate, which is revealed by X-ray photoelectron spectroscopy with depth etching. Specifically, calculations by density functional theory manifest that there are two half-filled levels (localized states) and three unoccupied levels (extended states) relating to Mo component in the ternary hybrid a-SiO x(Mo) interlayer, which play the roles of defect-assisted tunneling and direct tunneling for photogenerated holes, respectively. The transport process of photogenerated holes in the MoO x/n-Si heterojunction device is well-described by the tunnel-recombination model. Meanwhile, the a-SiO x/poly(Si(n+)) has been assembled on the rear of the device for direct tunneling of photoinduced electrons and blocking photoinduced holes.

8.
ACS Appl Mater Interfaces ; 9(20): 17565-17575, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28463491

RESUMO

In this article, using controllable magnetron sputtering of indium tin oxide (ITO) materials on single crystal silicon at 100 °C, the optoelectronic heterojunction frame of ITO/a-SiOx(In)/n-Si is simply fabricated for the purpose of realizing passivation contact and hole tunneling. It is found that the gradation profile of indium (In) element together with silicon oxide (SiOx/In) within the ultrathin boundary zone between ITO and n-Si occurs and is characterized by X-ray photoelectron spectroscopy with the ion milling technique. The atomistic morphology and physical phase of the interfacial layer has been observed with a high-resolution transmission electron microscope. X-ray diffraction, Hall effect measurement, and optical transmittance with Tauc plot have been applied to the microstructure and property analyses of ITO thin films, respectively. The polycrystalline and amorphous phases have been verified for ITO films and SiOx(In) hybrid layer, respectively. For the quantum transport, both direct and defect-assisted tunneling of photogenerated holes through the a-SiOx(In) layer is confirmed. Besides, there is a gap state correlative to the indium composition and located at Ev + 4.60 eV in the ternary hybrid a-SiOx(In) layer that is predicted by density functional theory of first-principles calculation, which acts as an "extended delocalized state" for direct tunneling of the photogenerated holes. The reasonable built-in potential (Vbi = 0.66 V) and optimally controlled ternary hybrid a-SiOx(In) layer (about 1.4 nm) result in that the device exhibits excellent PV performance, with an open-circuit voltage of 0.540 V, a short-circuit current density of 30.5 mA/cm2, a high fill factor of 74.2%, and a conversion efficiency of 12.2%, under the AM 1.5 illumination. The work function difference between ITO (5.06 eV) and n-Si (4.31 eV) is determined by ultraviolet photoemission spectroscopy and ascribed to the essence of the built-in-field of the PV device. In addition, the strong inversion layer in the surface of the n-Si substrate is tentatively correlated to the a-SiOx(In) interface layer as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA