Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400248, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695866

RESUMO

Multifunctional carbon materials have revealed distinctive features and excellent performance in the field of catalysis. However, the facile fabrication of bifunctional carbon materials with special wettability and catalytic activity remains a grand challenge in Pickering emulsion catalysis. Herein, we reported one-step construction of bifunctional biochar with superamphiphilicity and catalytic activity directly from the thermolysis of sawdust and 1-butyl-3-methylimidazolium tetrafluoroborate for enhancing the oxidation of benzyl alcohol in Pickering emulsion. Co-doping of B and F enhanced the hydrophilicity of biochar, and the oleophilicity of biochar was kept simultaneously. Conversion became 4 times using bifunctional biochar compared with blank results during the oxidation of benzyl alcohol. More interestingly, the turnover frequency (TOF) value using bifunctional biochar enhanced 61 % than that employing N-doped superamphiphilic carbon without catalytic activity. Catalytic activities of bifunctional biochar could be ascribed to the existence of different chemical bonds containing the element B. This work paves a path toward rational design of bifunctional biochar materials with special wettability and catalytic activity for greatly enhancing the liquid-liquid biphasic reaction efficiencies.

2.
J Am Chem Soc ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805725

RESUMO

Cu-based catalysts are optimal for the electroreduction of CO2 to generate hydrocarbon products. However, controlling product distribution remains a challenging topic. The theoretical investigations have revealed that the coordination number (CN) of Cu considerably influences the adsorption energy of *CO intermediates, thereby affecting the reaction pathway. Cu catalysts with different CNs were fabricated by reducing CuO precursors via cyclic voltammetry (Cyc-Cu), potentiostatic electrolysis (Pot-Cu), and pulsed electrolysis (Pul-Cu), respectively. High-CN Cu catalysts predominantly generate C2+ products, while low-CN Cu favors CH4 production. For instance, over the high-CN Pot-Cu, C2+ is the main product, with the Faradaic efficiency (FE) reaching 82.5% and a partial current density (j) of 514.3 mA cm-2. Conversely, the low-CN Pul(3)-Cu favors the production of CH4, achieving the highest FECH4 value of 56.7% with a jCH4 value of 234.4 mA cm-2. In situ X-ray absorption spectroscopy and Raman spectroscopy studies further confirm the different *CO adsorptions over Cu catalysts with different CN, thereby directing the reaction pathway of the CO2RR.

3.
Chem Commun (Camb) ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807546

RESUMO

Electrochemical CO2 reduction (ECR) to valuable chemicals and fuels using renewable energy is a promising way to reduce carbon emission. Herein, Sn-based films were electrodeposited on Ag foil surfaces (Sn/Ag-y) for selective ECR to CO, where y represented the concentration of SnCl2 in the electrodeposition bath. The Sn/Ag-20 electrode achieved a high CO faradaic efficiency of 96.0% with a current density of 69.3 mA cm-2. The enhanced catalytic performance could be attributed to appropriate superficial properties, large electrochemical active surface areas, low charge transfer resistance, efficient stabilization capacity of the CO2˙- intermediates, and suitable combination with electrolytes.

4.
Angew Chem Int Ed Engl ; : e202405733, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719782

RESUMO

n-propanol is an important pharmaceutical and pesticide intermediate. To produce n-propanol by electrochemical reduction of CO2 is a promising way, but is largely restricted by the very low selectivity and activity. How to promote the coupling of *C1 and *C2 intermediates to form the *C3 intermediate for n-propanol formation is challenging. Here, we propose the construction of bicontinuous structure of Cu2O/Cu electrocatalyst, which consists of ultra-small Cu2O nanodomains, Cu nanodomains and large amounts of grain boundaries between Cu2O and Cu nanodomains. The n-propanol current density is as high as 101.6 mA cm-2 at the applied potential of -1.1 V vs. reversible hydrogen electrode in flow cell, with the Faradaic efficiency up to 12.1%. Moreover, the catalyst keeps relatively stable during electrochemical CO2 reduction process. Experimental studies and theoretical calculations reveal that the bicontinuous structure of Cu2O/Cu can facilitate the *CO formation, *CO-*CO coupling and *CO-*OCCO coupling for the final generation of n-propanol.

5.
Angew Chem Int Ed Engl ; : e202409019, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785222

RESUMO

Urea electrosynthesis from carbon dioxide (CO2) and nitrate (NO3-) is an alternative approach to traditional energy-intensive urea synthesis technology. Herein, we report a CuAu single-atom alloy (SAA) with electronic metal support interaction (EMSI), achieving a high urea yield rate of 813.6 µg h-1 mgcat-1 at -0.94 V versus reversible hydrogen electrode (vs. RHE) and a Faradaic efficiency (FE) of 45.2% at -0.74 V vs. RHE. In-situ experiments and theoretical calculations demonstrated that single-atom Cu sites modulate the adsorption behavior of intermediate species. Bimetallic sites synergistically accelerate C-N bond formation through spontaneous coupling of *CO and *NO to form *ONCO as key intermediates. More importantly, electronic metal support interaction between CuAu SAA and CeO2 carrier further modulates electron structure and interfacial microenvironment, endowing electrocatalysts with superior activity and durability. This work constructs SAA electrocatalysts with EMSI effect to tailor C-N coupling at the atomic level, which can provide guidance for the development of C-N coupling systems.

6.
J Am Chem Soc ; 146(15): 10934-10942, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581437

RESUMO

Hydroxylamine (HA, NH2OH) is a critical feedstock in the production of various chemicals and materials, and its efficient and sustainable synthesis is of great importance. Electroreduction of nitrate on Cu-based catalysts has emerged as a promising approach for green ammonia (NH3) production, but the electrosynthesis of HA remains challenging due to overreduction of HA to NH3. Herein, we report the first work on ketone-mediated HA synthesis using nitrate in water. A metal-organic-framework-derived Cu catalyst was developed to catalyze the reaction. Cyclopentanone (CP) was used to capture HA in situ to form CP oxime (CP-O) with C═N bonds, which is prone to hydrolysis. HA could be released easily after electrolysis, and CP was regenerated. It was demonstrated that CP-O could be formed with an excellent Faradaic efficiency of 47.8%, a corresponding formation rate of 34.9 mg h-1 cm-2, and a remarkable carbon selectivity of >99.9%. The hydrolysis of CP-O to release HA and CP regeneration was also optimized, resulting in 96.1 mmol L-1 of HA stabilized in the solution, which was significantly higher than direct nitrate reduction. Detailed in situ characterizations, control experiments, and theoretical calculations revealed the catalyst surface reconstruction and reaction mechanism, which showed that the coexistence of Cu0 and Cu+ facilitated the protonation and reduction of *NO2 and *NH2OH desorption, leading to the enhancement for HA production.

7.
Chem Sci ; 15(15): 5525-5530, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638229

RESUMO

The hydrogenation of CO2 to formic acid is an essential subject since formic acid is a promising hydrogen storage material and a valuable commodity chemical. In this study, we report for the first time the hydrogenation of CO2 to formic acid catalyzed by a Pd2+ catalyst, Pd-V/AC-air. The catalyst exhibited extraordinary catalytic activity toward the hydrogenation of CO2 to formic acid. The TON and TOF are up to 4790 and 2825 h-1, respectively, representing the top level among reported heterogeneous Pd catalysts. By combining a study of first-principles density functional theory with experimental results, the superiority of Pd2+ over Pd0 was confirmed. Furthermore, the presence of V modified the electronic state of Pd2+, thus promoting the reaction. This study reports the effect of metal valence and electronic state on the catalytic performance for the first time and provides a new prospect for the design of an efficient heterogeneous catalyst for the hydrogenation of CO2 to formic acid.

8.
Nat Chem ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594366

RESUMO

Conversion of plastic wastes to valuable carbon resources without using noble metal catalysts or external hydrogen remains a challenging task. Here we report a layered self-pillared zeolite that enables the conversion of polyethylene to gasoline with a remarkable selectivity of 99% and yields of >80% in 4 h at 240 °C. The liquid product is primarily composed of branched alkanes (selectivity of 72%), affording a high research octane number of 88.0 that is comparable to commercial gasoline (86.6). In situ inelastic neutron scattering, small-angle neutron scattering, solid-state nuclear magnetic resonance, X-ray absorption spectroscopy and isotope-labelling experiments reveal that the activation of polyethylene is promoted by the open framework tri-coordinated Al sites of the zeolite, followed by ß-scission and isomerization on Brönsted acids sites, accompanied by hydride transfer over open framework tri-coordinated Al sites through a self-supplied hydrogen pathway to yield selectivity to branched alkanes. This study shows the potential of layered zeolite materials in enabling the upcycling of plastic wastes.

9.
J Am Chem Soc ; 146(14): 10084-10092, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530325

RESUMO

Glycine is a nonessential amino acid that plays a vital role in various biological activities. However, the conventional synthesis of glycine requires sophisticated procedures or toxic feedstocks. Herein, we report an electrochemical pathway for glycine synthesis via the reductive coupling of oxalic acid and nitrate or nitrogen oxides over atomically dispersed Fe-N-C catalysts. A glycine selectivity of 70.7% is achieved over Fe-N-C-700 at -1.0 V versus RHE. Synergy between the FeN3C structure and pyrrolic nitrogen in Fe-N-C-700 facilitates the reduction of oxalic acid to glyoxylic acid, which is crucial for producing glyoxylic acid oxime and glycine, and the FeN3C structure could reduce the energy barrier of *HOOCCH2NH2 intermediate formation thus accelerating the glyoxylic acid oxime conversion to glycine. This new synthesis approach for value-added chemicals using simple carbon and nitrogen sources could provide sustainable routes for organonitrogen compound production.

10.
Chem Sci ; 15(11): 4140-4145, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487226

RESUMO

For CO2 electroreduction (CO2ER) to C2 compounds, it is generally accepted that the formation of ethylene and ethanol shares the same intermediate, *HCCOH. The majority of studies have achieved high faradaic efficiency (FE) towards ethylene, but faced challenges to get high ethanol FE. Herein, we present an alkyl sulfonate surfactant (e.g., sodium dodecyl sulfonate, SDS) mediated CO2ER to a C2 product over an in situ generated Cu catalyst (Cu@SDS) from SDS-modified Cu(OH)2. It achieves the CO2ER to ethylene as the sole C2 product at low applied voltages with a FE of 55% at -0.6 V vs. RHE and to ethanol as the main product at potentials ≥0.7 V with a maximum FE of 64% and a total C2 FE of 86% at -0.8 V, with a current density of 231 mA cm-2 in a flow cell. Mechanism investigation indicates that SDS modifies the oxidation state of the in situ formed Cu species in Cu@SDS, thus tuning the catalyst activity for CO2ER and lowering the C-C coupling energy barrier; meanwhile, it tunes the adsorption mode of the *HCCOH intermediates on the catalyst, thus mediating the selectivity of CO2ER towards C2 products.

11.
Chem Sci ; 15(9): 3233-3239, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425518

RESUMO

Urea electrosynthesis under ambient conditions is emerging as a promising alternative to conventional synthetic protocols. However, the weak binding of reactants/intermediates on the catalyst surface induces multiple competing pathways, hindering efficient urea production. Herein, we report the synthesis of defective Co3O4 catalysts that integrate dual-functional sites for urea production from CO2 and nitrite. Regulating the reactant adsorption capacity on defective Co3O4 catalysts can efficiently control the competing reaction pathways. The urea yield rate of 3361 mg h-1 gcat-1 was achieved with a corresponding faradaic efficiency (FE) of 26.3% and 100% carbon selectivity at a potential of -0.7 V vs. the reversible hydrogen electrode. Both experimental and theoretical investigations reveal that the introduction of oxygen vacancies efficiently triggers the formation of well-matched adsorption/activation sites, optimizing the adsorption of reactants/intermediates while decreasing the C-N coupling reaction energy. This work offers new insights into the development of dual-functional catalysts based on non-noble transition metal oxides with oxygen vacancies, enabling the efficient electrosynthesis of essential C-N fine chemicals.

12.
Nat Commun ; 15(1): 2166, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461211

RESUMO

Achieving selective hydrodeoxygenation of α, ß-unsaturated carbonyl groups to alkenes poses a substantial challenge due to the presence of multiple functional groups. In this study, we develop a ZnNC-X catalyst (X represents the calcination temperature) that incorporates both Lewis acidic-basic sites and Zn-Nx sites to address this challenge. Among the catalyst variants, ZnNC-900 catalyst exhibits impressive selectivity for alkenes in the hydrodeoxygenation of α, ß-unsaturated carbonyl compounds, achieving up to 94.8% selectivity. Through comprehensive mechanism investigations and catalyst characterization, we identify the Lewis acidic-basic sites as responsible for the selective hydrogenation of C=O bonds, while the Zn-Nx sites facilitate the subsequent selective hydrodeoxygenation step. Furthermore, ZnNC-900 catalyst displays broad applicability across a diverse range of unsaturated carbonyl compounds. These findings not only offer valuable insights into the design of effective catalysts for controlling alkene selectivity but also extend the scope of sustainable transformations in synthetic chemistry.

13.
Angew Chem Int Ed Engl ; 63(15): e202400439, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38345401

RESUMO

Electroreduction of CO2 to C2+ products provides a promising strategy for reaching the goal of carbon neutrality. However, achieving high selectivity of C2+ products at high current density remains a challenge. In this work, we designed and prepared a multi-sites catalyst, in which Pd was atomically dispersed in Cu (Pd-Cu). It was found that the Pd-Cu catalyst had excellent performance for producing C2+ products from CO2 electroreduction. The Faradaic efficiency (FE) of C2+ products could be maintained at approximately 80.8 %, even at a high current density of 0.8 A cm-2 for at least 20 hours. In addition, the FE of C2+ products was above 70 % at 1.4 A cm-2. Experiments and density functional theory (DFT) calculations revealed that the catalyst had three distinct catalytic sites. These three active sites allowed for efficient conversion of CO2, water dissociation, and CO conversion, ultimately leading to high yields of C2+ products.

14.
Nat Commun ; 15(1): 1109, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321049

RESUMO

Upcycling of CO2 into fuels by virtually unlimited solar energy provides an ultimate solution for addressing the substantial challenges of energy crisis and climate change. In this work, we report an efficient nanostructured Ru/MnOx catalyst composed of well-defined Ru/MnO/Mn3O4 for photo-thermal catalytic CO2 hydrogenation to CH4, which is the result of a combination of external heating and irradiation. Remarkably, under relatively mild conditions of 200 °C, a considerable CH4 production rate of 166.7 mmol g-1 h-1 was achieved with a superior selectivity of 99.5% at CO2 conversion of 66.8%. The correlative spectroscopic and theoretical investigations suggest that the yield of CH4 is enhanced by coordinating photon energy with thermal energy to reduce the activation energy of reaction and promote formation of key intermediate COOH* species over the catalyst. This work opens up a new strategy for CO2 hydrogenation toward CH4.

15.
Angew Chem Int Ed Engl ; 63(15): e202400033, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38225207

RESUMO

Chemical manufacturing utilizing renewable sources and energy emerges as a promising path towards sustainability and carbon neutrality. The electrocatalytic reactions involving nitrogen oxides (NOx) offered a potential strategy for synthesizing various nitrogenous chemicals. However, it is currently hindered by low selectivity/efficiency and limited reaction pathways, mainly due to the difficulties in controllable generation and utilization of nitrogenous intermediates. In this minireview, focusing on nitrogenous intermediates in NOx-involved electrocatalytic reactions, we discuss newly developed methodologies for studying and controlling the generation, conversion, and utilizing of nitrogenous intermediates, which enable recent developments in NOx-involved electrocatalytic reactions that yield various products, including ammonia (NH3), organonitrogen molecules, and nitrogenous compounds exhibiting unconventional oxidation states. Furthermore, we also make an outlook to highlight future directions in the emerging field of NOx-involved electrocatalytic reactions.

16.
Nat Commun ; 15(1): 712, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267443

RESUMO

The chemical transformation of waste polymers into value-added chemicals is of significance for circular economy and sustainable development. Herein, we report upcycling poly(succinates) (PSS) with amines into N-substituted succinimides over succinimide anion-based ionic liquids (ILs, e.g, 1,8-diazabicyclo[5.4.0]undec-7-ene succinimide, [HDBU][Suc]). Assisted with H2O, [HDBU][Suc]) showed the best performance, which could achieve complete transformation of a series of PSS into succinimide derivatives and corresponding diols under mild and metal-free conditions. Mechanism investigation indicates that the cation-anion confined hydrogen-bonding interactions among IL, H2O, ester group, and amino/amide groups, strengthens nucleophilicity of the N atoms in amino/amide groups, and improves electrophilicity of carbonyl C atom in ester group. The attack of the amino/amide N atom on carbonyl C of ester group results in cleavage of carbonyl C-O bond in polyester and formation of amide group. This strategy is also effective for aminolysis of poly(trimethylene glutarate) to glutarimides, and poly(1,4-butylene adipate) to caprolactone diimides.

17.
Nat Commun ; 15(1): 160, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167384

RESUMO

Chemical recycling of plastic wastes is of great significance for sustainable development, which also represents a largely untapped opportunity for the synthesis of value-added chemicals. Herein, we report a novel and general strategy to degrade polyesters via directly breaking the Calkoxy-O bond by nucleophilic substitution of halide anion of ionic liquids under mild conditions. Combined with hydrogenation over Pd/C, 1-butyl-2,3-dimethylimidazolium bromide can realize the deconstruction of various polyesters including aromatic and aliphatic ones, copolyesters and polyester mixtures into corresponding carboxylic acids and alkanes; meanwhile, tetrabutylphosphonium bromide can also achieve direct decomposition of the polyesters with ß-H into carboxylic acids and alkenes under hydrogen- and metal-free conditions. It is found that the hydrogen-bonding interaction between ionic liquid and ester group in polyester enhances the nucleophilicity of halide anion and activates the Calkoxy-O bond. The findings demonstrate how polyester wastes can be a viable feedstock for the production of carboxylic acids and hydrocarbons.

18.
Sci Bull (Beijing) ; 69(5): 563-565, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38216443
19.
Angew Chem Int Ed Engl ; 63(2): e202313796, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38015565

RESUMO

Modulation of the microenvironment on the electrode surface is one of the effective means to improve the efficiency of electrocatalytic carbon dioxide reduction (eCO2 RR). To achieve high conversion rates, the phase boundary at the electrode surface should be finely controlled to overcome the limitation of CO2 solubility in the aqueous electrolyte. Herein, we developed a simple and efficient method to structure electrocatalyst with a superhydrophobic surface microenvironment by one-step co-electrodeposition of Cu and polytetrafluoroethylene (PTFE) on carbon paper. The super-hydrophobic Cu-based electrode displayed a high ethylene (C2 H4 ) selectivity with a Faraday efficiency (FE) of 67.3 % at -1.25 V vs. reversible hydrogen electrode (RHE) in an H-type cell, which is 2.5 times higher than a regular Cu electrode without PTFE. By using PTFE as a surface modifier, the activity of eCO2 RR is enhanced and water (proton) adsorption is inhibited. This strategy has the potential to be applied to other gas-conversion electrocatalysts.

20.
Angew Chem Int Ed Engl ; 63(9): e202315822, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38081787

RESUMO

Electroreduction of CO2 into valuable chemicals and fuels is a promising strategy to mitigate energy and environmental problems. However, it usually suffers from unsatisfactory selectivity for a single product and inadequate electrochemical stability. Herein, we report the first work to use cationic Gemini surfactants as modifiers to boost CO2 electroreduction to formate. The selectivity, activity and stability of the catalysts can be all significantly enhanced by Gemini surfactant modification. The Faradaic efficiency (FE) of formate could reach up to 96 %, and the energy efficiency (EE) could achieve 71 % over the Gemini surfactants modified Cu electrode. In addition, the Gemini surfactants modified commercial Bi2 O3 nanosheets also showed an excellent catalytic performance, and the FE of formate reached 91 % with a current density of 510 mA cm-2 using the flow cell. Detailed studies demonstrated that the double quaternary ammonium cations and alkyl chains of the Gemini surfactants played a crucial role in boosting electroreduction CO2 , which can not only stabilize the key intermediate HCOO* but also provide an easy access for CO2 . These observations could shine light on the rational design of organic modifiers for promoted CO2 electroreduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA