Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37763821

RESUMO

Medium exchange of particles/cells to a clean buffer with a low background is essential for biological, chemical, and clinical research, which has been conventionally conducted using centrifugation. However, owing to critical limitations, such as possible cell loss and physical stimulation of cells, microfluidic techniques have been adopted for medium exchange. This study demonstrates a continuous on-chip washing process in a co-flow system using viscoelastic and Newtonian fluids. The co-flow system was constructed by adding a small amount of biocompatible polymer (xanthan gum, XG) to a sample containing particles or cells and introducing Newtonian fluids as sheath flows. Polymer concentration-dependent and particle size-dependent lateral migration of particles in the co-flow system were examined, and then the optimal concentration and the critical particle size for medium exchange were determined at the fixed total flow rate of 100 µL/min. For clinical applications, the continuous on-chip washing of white blood cells (WBCs) in lysed blood samples was demonstrated, and the washing performance was evaluated using a scanning spectrophotometer.

2.
Micromachines (Basel) ; 14(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37420947

RESUMO

An early and accurate diagnosis of Candida albicans is critical for the rapid antifungal treatment of candidemia, a mortal bloodstream infection. This study demonstrates viscoelastic microfluidic techniques for continuous separation, concentration, and subsequent washing of Candida cells in the blood. The total sample preparation system contains two-step microfluidic devices: a closed-loop separation and concentration device and a co-flow cell-washing device. To determine the flow conditions of the closed-loop device, such as the flow rate factor, a mixture of 4 and 13 µm particles was used. Candida cells were successfully separated from the white blood cells (WBCs) and concentrated by 74.6-fold in the sample reservoir of the closed-loop system at 800 µL/min with a flow rate factor of 3.3. In addition, the collected Candida cells were washed with washing buffer (deionized water) in the microchannels with an aspect ratio of 2 at a total flow rate of 100 µL/min. Finally, Candida cells at extremely low concentrations (Ct > 35) became detectable after the removal of WBCs, the additional buffer solution in the closed-loop system (Ct = 30.3 ± 1.3), and further removal of blood lysate and washing (Ct = 23.3 ± 1.6).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA