Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(4): 581-586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499776

RESUMO

Heterosis utilization in a large proportion of crops depends on the use of cytoplasmic male sterility (CMS) tools, requiring the development of homozygous fertile lines and CMS lines1. Although doubled haploid (DH) technology has been developed for several crops to rapidly generate fertile lines2,3, CMS lines are generally created by multiple rounds of backcrossing, which is time consuming and expensive4. Here we describe a method for generating both homozygous fertile and CMS lines through in vivo paternal haploid induction (HI). We generated in-frame deletion and restored frameshift mutants of BoCENH3 in Brassica oleracea using the CRISPR/Cas9 system. The mutants induced paternal haploids by outcrossing. We subsequently generated HI lines with CMS cytoplasm, which enabled the generation of homozygous CMS lines in one step. The BoCENH3-based HI system provides a new DH technology to accelerate breeding in Brassica and other crops.

2.
Nat Genet ; 56(3): 517-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351383

RESUMO

Brassica oleracea, globally cultivated for its vegetable crops, consists of very diverse morphotypes, characterized by specialized enlarged organs as harvested products. This makes B. oleracea an ideal model for studying rapid evolution and domestication. We constructed a B. oleracea pan-genome from 27 high-quality genomes representing all morphotypes and their wild relatives. We identified structural variations (SVs) among these genomes and characterized these in 704 B. oleracea accessions using graph-based genome tools. We show that SVs exert bidirectional effects on the expression of numerous genes, either suppressing through DNA methylation or promoting probably by harboring transcription factor-binding elements. The following examples illustrate the role of SVs modulating gene expression: SVs promoting BoPNY and suppressing BoCKX3 in cauliflower/broccoli, suppressing BoKAN1 and BoACS4 in cabbage and promoting BoMYBtf in ornamental kale. These results provide solid evidence for the role of SVs as dosage regulators of gene expression, driving B. oleracea domestication and diversification.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Genoma de Planta/genética , Expressão Gênica
3.
Theor Appl Genet ; 137(2): 41, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305900

RESUMO

KEY MESSAGE: A causal gene BoUGT76C2, conferring clubroot resistance in wild Brassica oleracea, was identified and functionally characterized. Clubroot is a devastating soil-borne disease caused by the obligate biotrophic pathogen Plasmodiophora brassica (P. brassicae), which poses a great threat to Brassica oleracea (B. oleracea) production. Although several QTLs associated with clubroot resistance (CR) have been mapped in cultivated B. oleracea, none have been cloned in B. oleracea. Previously, we found that the wild B. oleracea B2013 showed high resistance to clubroot. In this study, we constructed populations using B2013 and broccoli line 90196. CR in B2013 is quantitatively inherited, and a major QTL, BolC.Pb9.1, was identified on C09 using QTL-seq and linkage analysis. The BolC.Pb9.1 was finely mapped to a 56 kb genomic region using F2:3 populations. From the target region, the candidate BoUGT76C2 showed nucleotide variations between the parents, and was inducible in response to P. brassicae infection. We generated BoUGT76C2 overexpression lines in the 90196 background, which showed significantly enhanced resistance to P. brassicae compared to the WT line, suggesting that BoUGT76C2 corresponds to the resistance gene BolC.Pb.9.1. This is the first report on the CR gene map-based cloning and functional analysis from wild relatives, which provides a theoretical basis to the understanding of the molecular mechanism of CR, and lays a foundation to improve the CR of cultivated B. oleracea.


Assuntos
Brassica , Plasmodioforídeos , Locos de Características Quantitativas , Brassica/genética , Mapeamento Cromossômico , Genes de Plantas , Clonagem Molecular , Plasmodioforídeos/genética , Doenças das Plantas/genética , Resistência à Doença/genética
4.
Plants (Basel) ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836153

RESUMO

Flowering time is an important agronomic trait in cabbage (Brassica oleracea L. var. capitata), but the molecular regulatory mechanism underlying flowering time regulation in cabbage remains unclear. In this study, transcriptome analysis was performed using two sets of cabbage materials: (1) the early-flowering inbred line C491 (P1) and late-flowering inbred line B602 (P2), (2) the early-flowering individuals F2-B and late-flowering individuals F2-NB from the F2 population. The analysis revealed 9508 differentially expressed genes (DEGs) common to both C491_VS_ B602 and F2-B_VS_F2-NB. The Kyoto Encyclopedia of Genes and Genomes (KEGGs) analysis showed that plant hormone signal transduction and the MAPK signaling pathway were mainly enriched in up-regulated genes, and ribosome and DNA replication were mainly enriched in down-regulated genes. We identified 321 homologues of Arabidopsis flowering time genes (Ft) in cabbage. Among them, 25 DEGs (11 up-regulated and 14 down-regulated genes) were detected in the two comparison groups, and 12 gene expression patterns closely corresponded with the different flowering times in the two sets of materials. Two genes encoding MADS-box proteins, Bo1g157450 (BoSEP2-1) and Bo5g152700 (BoSEP2-2), showed significantly reduced expression in the late-flowering parent B602 compared with the early-flowering parent C491 via qRT-PCR analysis, which was consistent with the RNA-seq data. Next, the expression levels of Bo1g157450 (BoSEP2-1) and Bo5g152700 (BoSEP2-2) were analyzed in two other groups of early-flowering and late-flowering inbred lines, which showed that their expression patterns were consistent with those in the parents. Sequence analysis revealed that three and one SNPs between B602 and C491 were identified in Bo1g157450 (BoSEP2-1) and Bo5g152700 (BoSEP2-2), respectively. Therefore, BoSEP2-1 and BoSEP2-2 were designated as candidates for flowering time regulation through a potential new regulatory pathway. These results provide new insights into the molecular mechanisms underlying flowering time regulation in cabbage.

5.
Nat Commun ; 14(1): 6212, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798291

RESUMO

Male sterility has been used for crop hybrid breeding for a long time. It has contributed greatly to crop yield increase. However, the genetic basis of male sterility has not been fully elucidated. Here, we report map-based cloning of the cabbage (Brassica oleracea) dominant male-sterile gene Ms-cd1 and reveal that it encodes a PHD-finger motif transcription factor. A natural allele Ms-cd1PΔ-597, resulting from a 1-bp deletion in the promoter, confers dominant genic male sterility (DGMS), whereas loss-of-function ms-cd1 mutant shows recessive male sterility. We also show that the ethylene response factor BoERF1L represses the expression of Ms-cd1 by directly binding to its promoter; however, the 1-bp deletion in Ms-cd1PΔ-597 affects the binding. Furthermore, ectopic expression of Ms-cd1PΔ-597 confers DGMS in both dicotyledonous and monocotyledonous plant species. We thus propose that the DGMS system could be useful for breeding hybrids of multiple crop species.


Assuntos
Brassica , Infertilidade Masculina , Masculino , Humanos , Infertilidade das Plantas/genética , Melhoramento Vegetal , Brassica/genética , Mutação
6.
Hortic Res ; 10(8): uhad133, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564271

RESUMO

Brassica oleracea comprises several important vegetable and ornamental crops, including curly kale, ornamental kale, cabbage, broccoli, and others. The accumulation of anthocyanins, important secondary metabolites valuable to human health, in these plants varies widely and is responsible for their pink to dark purple colors. Some curly kale varieties lack anthocyanins, making these plants completely green. The genetic basis of this trait is still unknown. We crossed the curly kale inbred line BK2019 (without anthocyanins) with the cabbage inbred line YL1 (with anthocyanins) and the Chinese kale inbred line TO1000 (with anthocyanins) to generate segregating populations. The no-anthocyanin trait was genetically controlled by a recessive gene, bona1. We generated a linkage map and mapped bona1 to a 256-kb interval on C09. We identified one candidate gene, Bo9g058630, in the target genomic region; this gene is homologous to AT5G42800, which encodes a dihydroflavonol-4-reductase-like (DFR-like) protein in Arabidopsis. In BK2019, a 1-bp insertion was observed in the second exon of Bo9g058630 and directly produced a stop codon. To verify the candidate gene function, CRISPR/Cas9 gene editing technology was applied to knock out Bo9g058630. We generated three bona1 mutants, two of which were completely green with no anthocyanins, confirming that Bo9g058630 corresponds to BoNA1. Different insertion/deletion mutations in BoNA1 exons were found in all six of the other no-anthocyanin kale varieties examined, supporting that independent disruption of BoNA1 resulted in no-anthocyanin varieties of B. oleracea. This study improves the understanding of the regulation mechanism of anthocyanin accumulation in B. oleracea subspecies.

7.
J Fungi (Basel) ; 9(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623590

RESUMO

Hyaloperonospora parasitica is a global pathogen that can cause leaf necrosis and seedling death, severely threatening the quality and yield of cabbage. However, the genome sequence and infection mechanisms of H. parasitica are still unclear. Here, we present the first whole-genome sequence of H. parasitica isolate BJ2020, which causes downy mildew in cabbage. The genome contains 4631 contigs and 9991 protein-coding genes, with a size of 37.10 Mb. The function of 6128 genes has been annotated. We annotated the genome of H. parasitica strain BJ2020 using databases, identifying 2249 PHI-associated genes, 1538 membrane transport proteins, and 126 CAZy-related genes. Comparative analyses between H. parasitica, H.arabidopsidis, and H. brassicae revealed dramatic differences among these three Brassicaceae downy mildew pathogenic fungi. Comprehensive genome-wide clustering analysis of 20 downy mildew-causing pathogens, which infect diverse crops, elucidates the closest phylogenetic affinity between H. parasitica and H. brassicae, the causative agent of downy mildew in Brassica napus. These findings provide important insights into the pathogenic mechanisms and a robust foundation for further investigations into the pathogenesis of H. parasitica BJ2020.

8.
Front Plant Sci ; 14: 1091588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937998

RESUMO

Introduction: Agrobacterium-mediated genetic transformation has been widely used for the identification of functional genes and regulatory and developmental mechanisms in plants. However, there are still some problems of low genetic transformation efficiency and high genotype dependence in cruciferous crops. Methods: In this study, broccoli, a worldwide Brassica crop, was used to investigate the effects of genotype, explant type, concentration of hygromycin B used during seedling selection, overexpression vector type, RNAi and CRISPR/cas9 on the genetic transformation efficiency. At the same time, two vectors, PHG-031350 and PHG-CRa, were used for subcellular localization of the glucoraphanin synthesis-related gene FMOGS-OX5 and clubroot resistance gene by a PEG-Ca2+-mediated transient transformation system for broccoli protoplasts. Finally, the Agrobacterium-mediated genetic transformation system of broccoli was optimized and improved. Results and Discussion: This study showed that hypocotyl explants are more suitable for Agrobacterium-mediated transgene and CRISPR/Cas9 gene editing of broccoli. In contrast to previous studies, we found that 5 mg/L hygromycin B was more advantageous for the selection of resistant broccoli sprouts, and genotype 19B42 reached the highest transformation rate of 26.96%, which is higher than that in Brassica oleracea crops. In addition, the inbred line 19B42 successfully achieved high genetic transformation of overexpression, RNAi and CRISPR/Cas9 vectors; thus, it is powerful recipient material for the genetic transformation of broccoli. Subcellular localization proved that the glucoraphanin metabolism-related gene Bol031350 and clubroot resistance gene CRa were both expressed in the cytoplasm and nucleus, which provided a scientific basis for studying the regulation of glucosinolate metabolism and clubroot resistance in cruciferous crops. Therefore, these findings will provide new insight into the improvement of the genetic transformation and molecular breeding of Brassica oleracea crops.

9.
Front Plant Sci ; 13: 1081321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578340

RESUMO

Transient transformation of plant protoplasts is an important method for studying gene function, subcellular localization and plant morphological development. In this study, an efficient transient transformation system was established by optimizing the plasmid concentration, PEG4000 mass concentration and genotype selection, key factors that affect transformation efficiency. Meanwhile, an efficient and universal broccoli protoplast isolation system was established. Using 0.5% (w/v) cellulase R-10 and 0.1% (w/v) pectolyase Y-23 to hydrolyze broccoli cotyledons of three different genotypes for 3 h, the yield was more than 5×106/mL/g, and the viability was more than 95%, sufficient to meet the high standards for protoplasts to be used in various experiments. The average transformation efficiency of the two plasmid vectors PHG-eGFP and CP507-YFP in broccoli B1 protoplasts were 61.4% and 41.7%, respectively. Using this system, we successfully performed subcellular localization of the products of three target genes (the clubroot resistance gene CRa and two key genes regulated by glucosinolates, Bol029100 and Bol031350).The results showed that the products of all three genes were localized in the nucleus. The high-efficiency transient transformation system for broccoli protoplasts constructed in this study makes it possible to reliably acquire high-viability protoplasts in high yield. This research provides important technical support for international frontier research fields such as single-cell sequencing, spatial transcriptomics, plant somatic hybridization, gene function analysis and subcellular localization.

10.
Food Chem X ; 15: 100429, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211778

RESUMO

The effects of a nanocarbon solution on the nutrients, glucosinolate metabolism and glucoraphanin pathway in broccoli were investigated. Significant positive linear relationships were observed between the nanocarbon solution and total protein yield, although effects on the soluble sugars, vitamin C and dry matter production were not observed. All nanocarbon solutions significantly increased the glucoraphanin content (p < 0.05), and the 18.75 L·ha-1 nanocarbon solution maximally increased the glucoraphanin content by 22.9 %. However, these treatments also significantly reduced the contents of glucobrassicin, 4-methoxyglucobrassicin, 4-hydroxyglucobrassicin and neoglucobrassicin. Further research demonstrated that the 18.75 L·ha-1 nanocarbon solution significantly upregulated the MAM1, IPMI2, CYP79F1, FMOgs-ox2, AOP2, and TGG1 expression levels, which directly resulted in the accumulation of glucoraphanin and glucoerucin. This study provides insights into the prospective nanotechnological approaches for developing efficient and environmentally friendly nanocarbon solution for use on crops.

11.
Genes (Basel) ; 13(9)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36140766

RESUMO

In order to breed broccoli and other Brassica materials to be highly resistant to clubroot disease, 41 Brassicaceae varieties were developed and identified between 2020 and 2021. Seven known clubroot genes were used for screening these materials. In addition, the resistant and susceptible broccoli cultivars were designed for observing their differences in the infection process with Plasmodiophora brassicae. The results showed that 90% of total materials had carried more than two clubroot resistance genes: one material carried two disease resistance genes, four materials carried seven genes for clubroot resistance, two materials carried six genes for clubroot resistance, and in total 32% of these materials carried five genes for clubroot resistance. As a result, several new genotypes of Brassicaceae germplasm were firstly created and obtained based on distant hybridization and identification of loci conferring resistance against Plasmodiophora brassicae in this study. We found and revealed that similar infection models of Plasmodiophora brassicae occurred in susceptible and resistant cultivars of broccoli, but differences in infection efficiency of Plasmodiophora brassicae also existed in both materials. For resistant broccoli plants, a small number of conidia formed in the root hair, and only a few spores could enter the cortex without forming sporangia while sporangia could form in susceptible plants. Our study could provide critical Brassica materials for breeding resistant varieties and new insight into understanding the mechanism of plant resistance.


Assuntos
Brassica , Plasmodioforídeos , Brassica/genética , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Plasmodioforídeos/genética
13.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743099

RESUMO

Petal color is an important agronomic trait in cabbage (Brassica oleracea L. var. capitata). Although the key gene BoCCD4 has been functionally characterized, the underlying molecular regulatory mechanism of petal color formation in cabbage is still unclear. In this study, we applied the transcriptome analysis of yellow petals from the cabbage inbred line YL-1 and white petals from the Chinese kale inbred line A192-1 and the BoCCD4-overexpressing transgenic line YF-2 (YL-1 background), which revealed 1928 DEGs common to both the A192-1 vs. YL-1 and the YL-1 vs. YF-2 comparison groups. One key enzyme-encoding gene, BoAAO3, and two key TF-encoding genes, Bo2g151880 (WRKY) and Bo3g024180 (SBP), related to carotenoid biosynthesis were significantly up-regulated in both the A192-1 and YF-2 petals, which was consistent with the expression pattern of BoCCD4. We speculate that these key genes may interact with BoCCD4 to jointly regulate carotenoid biosynthesis in cabbage petals. This study provides new insights into the molecular regulatory mechanism underlying petal color formation in cabbage.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Carotenoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
14.
Plants (Basel) ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214894

RESUMO

To better serve breeding of broccoli, the electrophysiological, morphological and transcriptomic profiling of the isogenic Ogura-CMS, DGMS and their maintainer fertile lines, were carried out by scanning electron microscopy, investigation of agronomic traits and RNA-sequencing analysis. The agronomic traits of plant height, length of the largest leaf, plant spread angle, single head weight, head width and stem diameter showed stronger performance in Ogura-CMS broccoli than in DGMS line or maintainer fertile line. However, the Ogura-CMS broccoli was poorer in the seed yield and seed germination than in the DGMS line and maintainer fertile line. Additionally, the DGMS broccoli had longer maturation and flowering periods than the Ogura-CMS and maintainer fertile lines. There were obvious differences in the honey gland, happening in the male sterility and fertile lines of broccoli. Additionally, the mechanism regulating Ogura-CMS and DGMS in broccoli was investigated using florets transcriptome analyses of the Ogura-CMS, DGMS and maintainer fertile lines. As a result, a total of 2670 differentially expressed genes (DEGs) were detected, including 1054 up- and 1616 downregulated genes in the Ogura-CMS and DGMS lines compared to the maintainer fertile line. A number of functionally known genes involved in plant hormones (auxin, salicylic acid and brassinosteroid), five Mitochondrial Oxidative Phosphorylation (OXPHOS) genes of atp8, LOC106319879, LOC106324734, LOC106314622 and LOC106298585, and three upregulated genes (Lhcb1, Lhcb3 and Lhcb5) associated with the photosynthesis-antenna protein pathway, were obviously detected to be highly associated with reproductive development including flowering time, maturity and reproductive period in the Ogura-CMS and DGMS broccoli comparing to their maintainer fertile line. Our research would provide a comprehensive foundation for understanding the differences of electrophysiological, morphological and transcriptomic profiles in the Ogura-CMS, DGMS and maintainer broccoli, and as well as being beneficial to exploring the mechanism of male sterility in Brassica crops.

15.
J Environ Radioact ; 241: 106771, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775288

RESUMO

Natural radium isotopes have been widely used to study groundwater discharge in different systems. Therefore, it is of great significance to understand the desorption behavior of radium isotopes on sediments to trace water-land exchange processes. However, there is very limited studies observing the desorption Ra isotopes to lake water of the brine lake. 224Ra desorption experiments with different salinities and particle sizes were carried out by collecting samples of brackish water from Qinghai Lake, brine from Dabuxun Lake and river sediments entering the lakes. The results show that the desorption activity of 224Ra from the river sediments to lake water of Qinghai Lake is 0.2 dpm/g when the salinity is 10.07‰. The maximum desorption activity of 224Ra from river sediments to lake water of Dabuxun Lake is 0.195 dpm/g at a salinity of 40.81‰. A salinity of 41.81‰ and particle size of 16.28 µm are the threshold points affecting the desorption behavior of Ra. When the salinity is less than 40.81‰, the desorption activity of Ra increases linearly with increasing salinity. When the salinity is greater than 40.81‰, the desorption activity of Ra decreases nonlinearly with increasing salinity and tends toward a stable low value. When the particle size is larger than 16.28 µm, the small particle size promotes desorption. The smaller the particle size is, the greater the desorption activity is. When the particle size is less than 16.28 µm, the small particle size inhibits desorption. The smaller the particle size is, the smaller the desorption activity. The co-precipitation of Ra2+ with supersaturated Ca2+, SO42- and other ions may be the main reason for the threshold point of salinity and particle size in Ra desorption process in salt lake system.


Assuntos
Monitoramento de Radiação , Rádio (Elemento) , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Tamanho da Partícula , Rádio (Elemento)/análise , Rios , Salinidade , Tibet
16.
Hortic Res ; 9: uhac195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37180031

RESUMO

Clubroot is a soil-borne disease in cabbage (Brassica oleracea L. var. capitata L.) caused by Plasmodiophora brassicae, which poses a great threat to cabbage production. However, clubroot resistance (CR) genes in Brassica rapa could be introduced into the cabbage via breeding to make it clubroot resistant. In this study, CR genes from B. rapa were introduced into the cabbage genome and the mechanism of gene introgression was explored. Two methods were used to create CR materials: (i) The fertility of CR Ogura CMS cabbage germplasms containing CRa was restored by using an Ogura CMS restorer. After cytoplasmic replacement and microspore culture, CRa-positive microspore individuals were obtained. (ii) Distant hybridization was performed between cabbage and B. rapa, which contained three CR genes (CRa, CRb, and Pb8.1). Finally, BC2 individuals containing all three CR genes were obtained. Inoculation results showed that both CRa-positive microspore individuals and BC2 individuals containing three CR genes were resistant to race 4 of P. brassicae. Sequencing results from CRa-positive microspore individuals with specific molecular markers and genome-wide association study (GWAS) showed penetration at the homologous position of the cabbage genome by a 3.42 Mb CRa containing a fragment from B. rapa; indicating homoeologous exchange (HE) as the theoretical basis for the introgression of CR resistance. The successful introduction of CR into the cabbage genome in the present study can provide useful clues for creating introgression lines within other species of interest.

17.
BMC Genomics ; 22(1): 811, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758753

RESUMO

BACKGROUND: The aerial organs of most terrestrial plants are covered by cuticular waxes, which impart plants a glaucous appearance and play important roles in protecting against various biotic and abiotic stresses. Despite many glossy green (wax-defective) mutants being well characterized in model plants, little is known about the genetic basis of glossy green mutant in broccoli. RESULTS: B156 is a spontaneous broccoli mutant showing a glossy green phenotype. Detection by scanning electron microscopy (SEM) and chromatography-mass spectrometry (GC-MS) revealed that B156 is a cuticular wax-defective mutant, lacking waxes mostly longer than C28. Inheritance analysis revealed that this trait was controlled by a single recessive gene, BoGL5. Whole-genome InDel markers were developed, and a segregating F2 population was constructed to map BoGL5. Ultimately, BoGL5 was mapped to a 94.1 kb interval on C01. The BoCER2 gene, which is homologous to the Arabidopsis CER2 gene, was identified as a candidate of BoGL5 from the target interval. Sequence analyses revealed that Bocer2 in B156 harbored a G-to-T SNP mutation at the 485th nucleotide of the CDS, resulting in a W-to-L transition at the 162nd amino acid, a conserved site adjacent to an HXXXD motif of the deduced protein sequence. Expression analysis revealed that BoCER2 was significantly down-regulated in the leaves, stems, and siliques of B156 mutant than that of B3. Last, ectopic expression of BoCER2 in A. thaliana could, whereas Bocer2 could not, rescue the phenotype of cer2 mutant. CONCLUSIONS: Overall, this study mapped the locus determining glossy phenotype of B156 and proved BoCER2 is functional gene involved in cuticular wax biosynthesis which would promotes the utilization of BoCER2 to enhance plant resistance to biotic and abiotic stresses, and breeding of B. oleracea cultivars with glossy traits.


Assuntos
Brassica , Brassica/genética , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Melhoramento Vegetal , Folhas de Planta/genética , Ceras
18.
BMC Plant Biol ; 21(1): 456, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615469

RESUMO

BACKGROUND: Leaf shape is an important agronomic trait in ornamental kale (Brassica oleracea L. var. acephala). Although some leaf shape-related genes have been reported in ornamental kale, the detailed mechanism underlying leaf shape formation is still unclear. Here, we report a lobed-leaf trait in ornamental kale, aiming to analyze its inheritance and identify the strong candidate gene. RESULTS: Genetic analysis of F2 and BC1 populations demonstrate that the lobed-leaf trait in ornamental kale is controlled by a single dominant gene, termed BoLl-1 (Brassica oleracea lobed-leaf). By performing whole-genome resequencing and linkage analyses, the BoLl-1 gene was finely mapped to a 127-kb interval on chromosome C09 flanked by SNP markers SL4 and SL6, with genetic distances of 0.6 cM and 0.6 cM, respectively. Based on annotations of the genes within this interval, Bo9g181710, an orthologous gene of LATE MERISTEM IDENTITY 1 (LMI1) in Arabidopsis, was predicted as the candidate for BoLl-1, and was renamed BoLMI1a. The expression level of BoLMI1a in lobed-leaf parent 18Q2513 was significantly higher compared with unlobed-leaf parent 18Q2515. Sequence analysis of the parental alleles revealed no sequence variations in the coding sequence of BoLMI1a, whereas a 1737-bp deletion, a 92-bp insertion and an SNP were identified within the BoLMI1a promoter region of parent 18Q2513. Verification analyses with BoLMI1a-specific markers corresponding to the promoter variations revealed that the variations were present only in the lobed-leaf ornamental kale inbred lines. CONCLUSIONS: This study identified a lobed-leaf gene BoLMI1a, which was fine-mapped to a 127-kb fragment. Three variations were identified in the promoter region of BoLMI1a. The transcription level of BoLMI1a between the two parents exhibited great difference, providing new insight into the molecular mechanism underlying leaf shape formation in ornamental kale.


Assuntos
Brassica/anatomia & histologia , Brassica/genética , Clonagem Molecular , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
19.
Planta ; 254(5): 92, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633541

RESUMO

MAIN CONCLUSION: From Brassica oleracea genome, 88 anthocyanin biosynthetic genes were identified. They expanded via whole-genome or tandem duplication and showed significant expression differentiation. Functional characterization revealed BoMYB113.1 as positive and BoMYBL2.1 as negative regulators responsible for anthocyanin accumulation. Brassica oleracea produces various health-promoting phytochemicals, including glucosinolates, carotenoids, and vitamins. Despite the anthocyanin biosynthetic pathways in the model plant Arabidopsis thaliana being well characterized, little is known about the genetic basis of anthocyanin biosynthesis in B. oleracea. In this study, we identified 88 B. oleracea anthocyanin biosynthetic genes (BoABGs) representing homologs of 46 Arabidopsis anthocyanin biosynthetic genes (AtABGs). Most anthocyanin biosynthetic genes, having expanded via whole-genome duplication and tandem duplication, retained more than one copy in B. oleracea. Expression analysis revealed diverse expression patterns of BoABGs in different tissues, and BoABG duplications showed significant expression differentiation. Additional expression analysis and functional characterization revealed that the positive regulator BoMYB113.1 and negative regulator BoMYBL2.1 may be key genes responsible for anthocyanin accumulation in red cabbage and ornamental kale by upregulating the expression of structural genes. This study paves the way for a better understanding of anthocyanin biosynthetic genes in B. oleracea and should promote breeding for anthocyanin content.


Assuntos
Arabidopsis , Brassica , Antocianinas , Arabidopsis/genética , Brassica/genética , Genes de Plantas , Melhoramento Vegetal
20.
Sci Rep ; 11(1): 9004, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903705

RESUMO

Glucoraphanin is a major secondary metabolite found in Brassicaceae vegetables, especially broccoli, and its degradation product sulforaphane plays an essential role in anticancer. The fine mapping of sulforaphane metabolism quantitative trait loci (QTLs) in broccoli florets is necessary for future marker-assisted selection strategies. In this study, we utilized a doubled haploid population consisting of 176 lines derived from two inbred lines (86,101 and 90,196) with significant differences in sulforaphane content, coupled with extensive genotypic and phenotypic data from two independent environments. A linkage map consisting of 438 simple sequence repeats markers was constructed, covering a length of 1168.26 cM. A total of 18 QTLs for sulforaphane metabolism in broccoli florets were detected, 10 were detected in 2017, and the other 8 were detected in 2018. The LOD values of all QTLs ranged from 3.06 to 14.47, explaining 1.74-7.03% of the biochemical variation between two years. Finally, 6 QTLs (qSF-C3-1, qSF-C3-2, qSF-C3-3, qSF-C3-5, qSF-C3-6 and qSF-C7) were stably detected in more than one environment, each accounting for 4.54-7.03% of the phenotypic variation explained (PVE) and a total of 30.88-34.86% of PVE. Our study provides new insights into sulforaphane metabolism in broccoli florets and marker-assisted selection breeding in Brassica oleracea crops.


Assuntos
Brassica/genética , Brassica/metabolismo , Mapeamento Cromossômico , Genética Populacional , Haploidia , Isotiocianatos/metabolismo , Locos de Características Quantitativas , Sulfóxidos/metabolismo , Biomarcadores , Ligação Genética , Padrões de Herança , Escore Lod
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA