Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228319

RESUMO

Transposable elements (TEs) are ubiquitous in the eukaryote genomes, but their evolutionary and functional significance remains largely obscure and contentious. Here, we explore the evolution and functional impact of TEs in two model unicellular eukaryotes, the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae, which diverged around 330 to 420 million years ago. We analyze the distribution of LTR retrotransposons (LTR-RTs, the only TE order identified in both species) and their solo-LTR derivatives in 35 strains of S. pombe and 128 strains of S. cerevisiae. We find that natural LTR-RT and solo-LTR insertions exhibit high presence-absence polymorphism among individuals in both species. Population genetics analyses show that solo-LTR insertions experienced functional constraints similar to synonymous sites of host genes in both species, indicating a majority of solo-LTR insertions might have evolved in a neutral manner. When knocking out nine representative solo-LTR insertions separately in the S. pombe strain 972h- and 12 representative solo-LTR insertions separately in the S. cerevisiae strain S288C, we find that one solo-LTR insertion in S. pombe has a significant effect on the fitness and transcriptome of its host. Together, our findings indicate that a fraction of natural TE insertions likely shape their host transcriptomes and thereby contribute to their host fitness, with implications for understanding the functional significance of TEs in eukaryotes.


Assuntos
Aptidão Genética , Retroelementos , Saccharomyces cerevisiae , Schizosaccharomyces , Schizosaccharomyces/genética , Saccharomyces cerevisiae/genética , Elementos de DNA Transponíveis , Evolução Molecular , Sequências Repetidas Terminais , Mutagênese Insercional , Genoma Fúngico
2.
Plant J ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312623

RESUMO

Plants use nucleotide-binding leucine-rich repeat receptors (NLRs) to sense pathogen effectors, initiating effector-triggered immunity (ETI). NLRs containing RESISTANCE TO POWDERY MILDEW 8 domain (RNLs) function as "helper" NLRs in flowering plants and support the immune responses mediated by "sensor" NLRs in cooperation with lipase-EP domain fused proteins (EP proteins). Despite their crucial roles in ETI, much remains unclear about the evolutionary trajectories of RNLs and their functional partners EP proteins. Here, we perform phylogenomic analyses of RNLs in 90 plants, covering the major diversity of plants, and identify the presence of RNLs in land plants and green algae, expanding the distribution of RNLs. We uncover a neglected major RNL group in gymnosperms, besides the canonical major group with NRG1s and ADR1s, and observe a drastic increase in RNL repertoire size in conifers. Phylogenetic analyses indicate that RNLs originated multiple times through domain shuffling, and the evolution of RNLs underwent a birth-and-death process. Moreover, we trace the origin of EP proteins back to the last common ancestor of vascular plants. We find that both RNLs and EP proteins evolve mainly under negative selection, revealing strong constraints on their function. Concerted losses and positive correlation in copy number are observed between RNL and EP sublineages, suggesting their cooperation in function. Together, our findings provide insights into the origin and evolution of plant helper NLRs, with implications for predicting novel innate immune signaling modules.

3.
Sci Adv ; 10(32): eado7464, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39110805

RESUMO

Self and nonself discrimination is fundamental to immunity. However, it remains largely enigmatic how the mechanisms of distinguishing nonself from self originated. As an intracellular nucleic acid sensor, protein kinase R (PKR) recognizes double-stranded RNA (dsRNA) and represents a crucial component of antiviral innate immunity. Here, we combine phylogenomic and functional analyses to show that PKR proteins probably originated from a preexisting kinase protein through acquiring dsRNA binding domains at least before the last common ancestor of jawed vertebrates during or before the Silurian period. The function of PKR appears to be conserved across jawed vertebrates. Moreover, we repurpose a protein closely related to PKR proteins into a putative dsRNA sensor, recapturing the making of PKR. Our study illustrates how a nucleic acid sensor might have originated via molecular tinkering with preexisting proteins and provides insights into the origins of innate immunity.


Assuntos
Evolução Molecular , Filogenia , Vertebrados , eIF-2 Quinase , Animais , Vertebrados/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , RNA de Cadeia Dupla/metabolismo , Imunidade Inata , Humanos , Ácidos Nucleicos/metabolismo , Evolução Biológica
4.
Ecol Appl ; 34(6): e3010, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38978282

RESUMO

Since 2014, highly pathogenic avian influenza (HPAI) H5 viruses of clade 2.3.4.4 have been dominating the outbreaks across Europe, causing massive deaths among poultry and wild birds. However, the factors shaping these broad-scale outbreak patterns, especially those related to waterbird community composition, remain unclear. In particular, we do not know whether these risk factors differ from those of other H5 clades. Addressing this knowledge gap is important for predicting and preventing future HPAI outbreaks. Using extensive waterbird survey datasets from about 6883 sites, we here explored the effect of waterbird community composition on HPAI H5Nx (clade 2.3.4.4) spatial patterns in the 2016/2017 and 2020/2021 epidemics in Europe, and compared it with the 2005/2006 HPAI H5N1 (clade 2.2) epidemic. We showed that HPAI H5 occurrences in wild birds in the three epidemics were strongly associated with very similar waterbird community attributes, which suggested that, in nature, similar interspecific transmission processes operate between the HPAI H5 subtypes or clades. Importantly, community phylogenetic diversity consistently showed a negative association with H5 occurrence in all three epidemics, suggesting a dilution effect of phylogenetic diversity. In contrast, waterbird community variables showed much weaker associations with HPAI H5Nx occurrence in poultry. Our results demonstrate that models based on previous epidemics can predict future HPAI H5 patterns in wild birds, implying that it is important to include waterbird community factors in future HPAI studies to predict outbreaks and improve surveillance activities.


Assuntos
Aves , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Europa (Continente)/epidemiologia , Virus da Influenza A Subtipo H5N1/fisiologia , Surtos de Doenças/veterinária , Vírus da Influenza A/fisiologia
6.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38001056

RESUMO

Navel orange cv. Gannanzao is a variant of the navel orange cv. Newhall (Citrus sinensis Osbeck cv. Newhall) that exhibits an earlier maturation, making it commercially valuable. However, the mechanisms underlying its early maturation remain obscure. To address this question, we conducted genome sequencing and de novo assembly of navel orange cv. Gannanzao. The assembled genome sequence is 334.57 Mb in length with a GC content of 31.48%. It comprises 318 contigs (N50 = 3.23 Mb) and 187 scaffolds (N50 = 31.86 Mb). The Benchmarking Universal Single-Copy Orthologs test demonstrates 94.6% completeness. The annotation revealed 23,037 gene models, 164.95 Mb of repetitive sequences, and 2,554 noncoding RNAs. A comparative analysis identified 323 fruit ripening-related genes in navel orange cv. Gannanzao genome, while navel orange cv. Newhall genome contained 345 such genes. These genes were organized into 320 orthologous gene families, with 30.3% of them exhibiting differences in gene copy numbers between the 2 genomes. Additionally, we identified 15 fruit ripening-related genes that have undergone adaptive evolution, suggesting their potential role in advancing fruit maturation in navel orange cv. Gannanzao. Whole-genome sequencing and annotation of navel orange cv. Gannanzao provides a valuable resource to unravel the early maturation mechanism of citrus and enriches the genomic resources for citrus research.


Assuntos
Citrus sinensis , Citrus sinensis/genética , Frutas , Cromossomos
7.
Mob DNA ; 14(1): 15, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849012

RESUMO

Mitochondrial linear plasmids have been sporadically reported in fungi and plants. Yet, much remains obscure about the diversity, distribution, and evolution of mitochondrial linear plasmids. Here, through phylogenomic analyses across 7,163 cellular organisms (including 991 plants), we find that mitochondrial linear plasmids are widely present in land plants and fungi. Phylogenetic analyses indicate that plants are likely to have acquired mitochondrial linear plasmids horizontally from fungi before or during the conquest of terrestrial environments by plants. Gene content analyses show that mitochondrial linear plasmids harbor a highly dynamic and promiscuous repertoire of genes. Our study refines the understanding of the origin and evolution of mitochondrial linear plasmids.

8.
Nat Commun ; 14(1): 4968, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591904

RESUMO

Endogenous retroviruses (ERVs) record past retroviral infections, providing molecular archives for interrogating the evolution of retroviruses and retrovirus-host interaction. However, the vast majority of ERVs are not active anymore due to various disruptive mutations, and ongoing retroviral invasion of vertebrate genomes has been rarely documented. Here we analyze genomics data from 2004 vertebrates for mining invading ERVs (ERVi). We find that at least 412 ERVi elements representing 217 viral operational taxonomic units are invading the genomes of 123 vertebrates, 18 of which have been assessed to be threatened species. Our results reveal an unexpected prevalence of ongoing retroviral invasion in vertebrates and expand the diversity of retroviruses recently circulating in the wild. We characterize the pattern and nature of ERVi in the historical and biogeographical context of their hosts, for instance, the generation of model organisms, sympatric speciation, and domestication. We suspect that these ERVi are relevant to conservation of threatened species, zoonoses in the wild, and emerging infectious diseases in humans.


Assuntos
Doenças Transmissíveis Emergentes , Retrovirus Endógenos , Humanos , Animais , Retrovirus Endógenos/genética , Genômica , Domesticação , Espécies em Perigo de Extinção , Vertebrados/genética
9.
Ecol Lett ; 26(10): 1780-1791, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586885

RESUMO

Species functional traits can influence pathogen transmission processes, and consequently affect species' host status, pathogen diversity, and community-level infection risk. We here investigated, for 143 European waterbird species, effects of functional traits on host status and pathogen diversity (subtype richness) for avian influenza virus at species level. We then explored the association between functional diversity and HPAI H5Nx occurrence at the community level for 2016/17 and 2021/22 epidemics in Europe. We found that both host status and subtype richness were shaped by several traits, such as diet guild and dispersal ability, and that the community-weighted means of these traits were also correlated with community-level risk of H5Nx occurrence. Moreover, functional divergence was negatively associated with H5Nx occurrence, indicating that functional diversity can reduce infection risk. Our findings highlight the value of integrating trait-based ecology into the framework of diversity-disease relationship, and provide new insights for HPAI prediction and prevention.


Assuntos
Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Ecologia , Europa (Continente)/epidemiologia
10.
Proc Natl Acad Sci U S A ; 120(31): e2304687120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487089

RESUMO

Discriminating self from nonself is fundamental to immunity. Yet, it remains largely elusive how the mechanisms of self and nonself discrimination originated. Sensing double-stranded RNA as nonself, the 2',5'-oligoadenylate synthetase (OAS)-ribonuclease L (RNase L) pathway represents a crucial component of innate immunity. Here, we combine phylogenomic and functional analyses to show that the functional OAS-RNase L pathway likely originated through tinkering with preexisting proteins before the rise of jawed vertebrates during or before the Silurian period (444 to 419 Mya). Multiple concerted losses of OAS and RNase L occurred during the evolution of jawed vertebrates, further supporting the ancient coupling between OAS and RNase L. Moreover, both OAS and RNase L genes evolved under episodic positive selection across jawed vertebrates, suggesting a long-running evolutionary arms race between the OAS-RNase L pathway and microbes. Our findings illuminate how an innate immune pathway originated via molecular tinkering.


Assuntos
Endorribonucleases , Imunidade Inata , Animais , Filogenia , Vertebrados
11.
Virology ; 583: 52-55, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148648

RESUMO

On occasion, retroviruses infect the genome of germline cell, forming endogenous retroviruses (ERVs), which provide molecular fossils for studying the deep evolution of retroviruses. While ERVs have been extensively characterized in the genomes of jawed vertebrates, much remains contentious and unexplored about the diversity and evolution of ERVs within jawless vertebrates. Here, we report the discovery of a novel ERV lineage, designated EbuERVs, in the genome of a hagfish Eptatretus burgeri. Phylogenetic analyses show that EbuERVs pertain to epsilon-retroviruses and might have derived from cross-species transmission from jawed vertebrates. EbuERVs are estimated to have invaded in the hagfish genome at least tens of millions of years ago. Evolutionary dynamics analyses indicate that EbuERVs might have experienced one proliferation peak and have been not active in transposition anymore. However, some EbuERVs can transcribe in embryo and might serve as lncRNA. Overall, these findings expand the distribution of retroviruses from jawed vertebrates to jawless vertebrates.


Assuntos
Retrovirus Endógenos , Infecções por Retroviridae , Animais , Filogenia , Evolução Molecular , Vertebrados , Retrovirus Endógenos/genética
13.
J Virol ; 97(1): e0179522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36598198

RESUMO

Activation-induced cytidine deaminase/apolipoprotein B mRNA editing catalytic polypeptide-like (AID/APOBEC) proteins are cytosine deaminases implicated in diverse biological functions. APOBEC1 (A1) proteins have long been thought to regulate lipid metabolism, whereas the evolutionary significance of A1 proteins in antiviral defense remains largely obscure. Endogenous retroviruses (ERVs) document past retroviral infections and are ubiquitous within the vertebrate genomes. Here, we identify the A1 gene repertoire, characterize the A1-mediated mutation footprints in ERVs, and interrogate the evolutionary arms race between A1 genes and ERVs across vertebrate species. We find that A1 genes are widely present in tetrapods, recurrently amplified and lost in certain lineages, suggesting that A1 genes might have originated during the early evolution of tetrapods. A1-mediated mutation footprints can be detected in ERVs across tetrapods. Moreover, A1 genes appear to have experienced episodic positive selection in many tetrapod lineages. Taken together, we propose that a long-running arms race between A1 genes and retroviruses might have persisted throughout the evolutionary course of tetrapods. IMPORTANCE APOBEC3 (A3) genes have been thought to function in defense against retroviruses, whereas the evolutionary significance of A1 proteins in antiviral defense remains largely obscure. In this study, we identify the A1 gene repertoire, characterize the A1-mediated mutation footprints in endogenous retroviruses (ERVs), and explore the evolutionary arms race between A1 genes and ERVs across vertebrate species. We found A1 proteins originated during the early evolution of tetrapods, and detected the footprints of A1-induced hypermutations in retroviral fossils. A1 genes appear to have experienced pervasive positive selection in tetrapods. Our study indicates a long-running arms race between A1 genes and retroviruses taking place throughout the evolutionary course of tetrapods.


Assuntos
Desaminase APOBEC-1 , Retrovirus Endógenos , Evolução Molecular , Infecções por Retroviridae , Animais , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/imunologia , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Retrovirus Endógenos/imunologia , Mutação , Filogenia , Infecções por Retroviridae/imunologia , Vertebrados/imunologia
15.
J Genet Genomics ; 49(8): 823-832, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760352

RESUMO

Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker, a devastating disease threatening the Actinidia fruit industry. In a search for non-host resistance genes against Psa, we find that the nucleotide-binding leucine-rich repeat receptor (NLR) protein ZAR1 from both Arabidopsis and Nicotiana benthamiana (Nb) recognizes HopZ5 and triggers cell death. The recognition requires ZED1 in Arabidopsis and JIM2 in Nb plants, which are members of the ZRK pseudokinases and known components of the ZAR1 resistosome. Surprisingly, Arabidopsis ZAR1 and RPM1, another NLR known to recognize HopZ5, confer disease resistance to HopZ5 in a strain-specific manner. Thus, ZAR1, but not RPM1, is solely required for resistance to P. s. maculicola ES4326 (Psm) carrying hopZ5, whereas RPM1 is primarily required for resistance to P. s. tomato DC3000 (Pst) carrying hopZ5. Furthermore, the ZAR1-mediated resistance to Psm hopZ5 in Arabidopsis is insensitive to SOBER1, which encodes a deacetylase known to suppress the RPM1-mediated resistance to Pst hopZ5. In addition, hopZ5 enhances P. syringae virulence in the absence of ZAR1 or RPM1 and that SOBER1 abolishes such virulence function. Together the study suggests that ZAR1 may be used for improving Psa resistance in Actinidia and uncovers previously unknown complexity of effector-triggered immunity and effector-triggered virulence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Bactérias , Hidrolases de Éster Carboxílico , Proteínas de Transporte , Proteínas NLR , Fosfotransferases , Doenças das Plantas , Pseudomonas syringae
16.
Commun Biol ; 5(1): 224, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273345

RESUMO

Cold seeps and hydrothermal vents are deep-sea reducing environments that are characterized by lacking oxygen and photosynthesis-derived nutrients. Most animals acquire nutrition in cold seeps or hydrothermal vents by maintaining epi- or endosymbiotic relationship with chemoautotrophic microorganisms. Although several seep- and vent-dwelling animals hosting symbiotic microbes have been well-studied, the genomic basis of adaptation to deep-sea reducing environment in nonsymbiotic animals is still lacking. Here, we report a high-quality genome of Chiridota heheva Pawson & Vance, 2004, which thrives by extracting organic components from sediment detritus and suspended material, as a reference for nonsymbiotic animal's adaptation to deep-sea reducing environments. The expansion of the aerolysin-like protein family in C. heheva compared with other echinoderms might be involved in the disintegration of microbes during digestion. Moreover, several hypoxia-related genes (Pyruvate Kinase M2, PKM2; Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase, LHPP; Poly(A)-specific Ribonuclease Subunit PAN2, PAN2; and Ribosomal RNA Processing 9, RRP9) were subject to positive selection in the genome of C. heheva, which contributes to their adaptation to hypoxic environments.


Assuntos
Fontes Hidrotermais , Aclimatação/genética , Adaptação Fisiológica/genética , Animais , Genoma , Simbiose
17.
mBio ; 13(2): e0018722, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35289644

RESUMO

The origin and deep evolution of retroviruses remain largely unclear. It has been proposed that retroviruses might have originated from a Ty3/Gypsy retrotransposon, but all known Ty3/Gypsy retrotransposons are only distantly related to retroviruses. Retroviruses and some plant Athila/Tat elements (within Ty3/Gypsy retrotransposons) independently evolved a dual RNase H domain and an env/env-like gene. Here, we reported the discovery of a novel lineage of retrotransposons, designated Odin retrotransposons, in the genomes of eight sea anemones (order Actinaria) within the Cnidaria phylum. Odin retrotransposons exhibited unique genome features, encoding a dual RNase H domain (like retroviruses) but no env gene (like most Ty3/Gypsy retrotransposons). Phylogenetic analyses based on reverse transcriptase showed that Odin retrotransposons formed a sister group to lokiretroviruses, and lokiretroviruses and Odin retrotransposons together were sister to canonical retroviruses. Moreover, phylogenetic analyses based on RNase H and integrase also supported the hypothesis that Odin retrotransposons were sisters to lokiretroviruses. Lokiretroviruses and canonical retroviruses did not form a monophyletic group, indicating that lokiretroviruses and canonical retroviruses might represent two distinct virus families. Taken together, the discovery of Odin retrotransposons narrowed down the evolutionary gaps between retrotransposons and canonical retroviruses and lokiretroviruses. IMPORTANCE The origin of retroviruses remains largely unclear. In this study, we discovered a novel retrotransposon lineage, Odin retrotransposons, within the genomes of sea anemones (order Actinaria). In contrast to retroviruses and most retrotransposons, Odin retrotransposons encode a dual RNase H domain but no env gene. Phylogenetic analyses showed that Odin retrotransposons were sisters to lokiretroviruses, and lokiretroviruses and Odin retrotransposons were sisters to retroviruses, establishing an evolutionary framework to decipher the origin of retroviruses (canonical retroviruses and lokiretroviruses). Our results provided insights into the diversity and deep evolution of LTR retrotransposons closely related to retroviruses.


Assuntos
Retroelementos , Retroviridae , Filogenia , DNA Polimerase Dirigida por RNA/genética , Retroviridae/genética , Ribonuclease H/genética
18.
Virol Sin ; 37(1): 11-18, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35234634

RESUMO

Retroviruses exclusively infect vertebrates, causing a variety of diseases. The replication of retroviruses requires reverse transcription and integration into host genomes. When infecting germline cells, retroviruses become inherited vertically, forming endogenous retroviruses (ERVs). ERVs document past viral infections, providing molecular fossils for studying the evolutionary history of retroviruses. In this review, we summarize the recent advances in understanding the diversity and evolution of retroviruses from the perspectives of viral fossils, and discuss the effects of ERVs on the evolution of host biology.


Assuntos
Retrovirus Endógenos , Fósseis , Animais , Retrovirus Endógenos/genética , Evolução Molecular , Filogenia
19.
Plant Cell ; 34(5): 1600-1620, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35166827

RESUMO

The nucleotide-binding, leucine-rich receptor (NLR) protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1), an immune receptor, interacts with HOPZ-ETI-DEFICIENT 1 (ZED1)-related kinases (ZRKs) and AVRPPHB SUSCEPTIBLE 1-like proteins to form a pentameric resistosome, triggering immune responses. Here, we show that ZAR1 emerged through gene duplication and that ZRKs were derived from the cell surface immune receptors wall-associated protein kinases (WAKs) through the loss of the extracellular domain before the split of eudicots and monocots during the Jurassic period. Many angiosperm ZAR1 orthologs, but not ZAR1 paralogs, are capable of oligomerization in the presence of AtZRKs and triggering cell death, suggesting that the functional ZAR1 resistosome might have originated during the early evolution of angiosperms. Surprisingly, inter-specific pairing of ZAR1 and AtZRKs sometimes results in the formation of a resistosome in the absence of pathogen stimulation, suggesting within-species compatibility between ZAR1 and ZRKs as a result of co-evolution. Numerous concerted losses of ZAR1 and ZRKs occurred in angiosperms, further supporting the ancient co-evolution between ZAR1 and ZRKs. Our findings provide insights into the origin of new plant immune surveillance networks.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas NLR/metabolismo , Fosfotransferases/metabolismo , Imunidade Vegetal/fisiologia
20.
Genome Biol Evol ; 13(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34791222

RESUMO

Transposable elements (TEs) comprise a large proportion of the eukaryote genomes. Yet it remains poorly understood how TEs influence the fitness of the hosts carrying them. Here, we empirically test the impact of TEs on the host fitness in the fission yeast Schizosaccharomyces pombe. We find that two families of TEs (Tf1 and Tf2 elements), both of which belong to long terminal repeat retrotransposons, are highly polymorphic among individual S. pombe strains. Only 13 complete Tf2 elements are identified in S. pombe laboratory strain 972. These 13 Tf2 elements integrated into host genomes in very recent time and are segregating within the S. pombe population. Through knocking out each of the 13 Tf2 elements in S. pombe strain 972, we find Tf2 knockout does not affect the host fitness, and Tf2 elements do not alter the expression of nearby genes. Challenged by diverse forms of stress, the Tf2 knockout strains do not exhibit different growth rates from wild-type strain. Together, we conclude that segregating complete Tf2 elements insertions are largely neutral to host fitness in the fission yeast. Our study provides genome-wide empirical support for the selfish nature of TEs in fission yeast.


Assuntos
Schizosaccharomyces , Elementos de DNA Transponíveis/genética , Regulação Fúngica da Expressão Gênica , Retroelementos/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Sequências Repetidas Terminais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA