Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920291

RESUMO

The 4th International Symposium on Food Science, Nutrition and Health (ISFSNH) was held at the Shangri-La Hotel in Dalian, China, on May 29-31, 2023. The symposium explored the connotations and needs of "The Great Food Perspective" under the theme "Focusing on new discoveries in food technology and creating a new future of nutrition and health" to better address the global emerging diverse food needs. The ISFSNH covered four areas: (1) food processing theory and technology, (2) food safety and quality control, (3) precision nutrition and health, and (4) creation of nutritious and healthy foods. More than 1000 scholars and entrepreneurs from more than 100 colleges and universities globally attended the conference. This special issue of the Journal of Agricultural and Food Chemistry highlights the important topics of the 4th ISFSNH and includes more than 20 papers.

2.
J Agric Food Chem ; 71(41): 14931-14946, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37792666

RESUMO

γ-Aminobutyric acid (GABA) is an important nonprotein amino acid that extensively exists in nature. At present, GABA is mainly obtained through chemical synthesis, plant enrichment, and microbial production, among which microbial production has received widespread attention due to its safety and environmental benefits. After using microbial fermentation to obtain GABA, it is necessary to be isolated and purified to ensure its quality and suitability for various industries such as food, agriculture, livestock, pharmaceutics, and others. This article provides a comprehensive review of the different sources of GABA, including its presence in nature and the synthesis methods. The factors affecting the production of microbial-derived GABA and its isolation and purification methods are further elucidated. Moreover, the main physiological functions of GABA and its application in different fields are also reviewed. By advancing our understanding of GABA, we can unlock its full potential and further utilize it in various fields to improve human health and well-being.


Assuntos
Ácido gama-Aminobutírico , Humanos , Fermentação , Ácido gama-Aminobutírico/metabolismo
3.
Int J Biol Macromol ; 253(Pt 5): 126825, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37696369

RESUMO

Teichoic acid (TA) is a weakly anionic polymer present in the cell walls of Gram-positive bacteria. It can be classified into wall teichoic acid (WTA) and lipoteichoic acid (LTA) based on its localization in the cell wall. The structure and biosynthetic pathway of TAs are strain-specific and have a significant role in maintaining cell wall stability. TAs have various beneficial functions, such as immunomodulatory, anticancer and antioxidant activities. However, the purity and yield of TAs are generally not high, and different isolation methods may even affect their structural integrity, which limits the research progress on the probiotic functions of TA. This paper reviews an overview of the structure and biosynthetic pathway of TAs in different strains, as well as the research progress of the isolation and purification methods of TAs. Furthermore, this review also highlights the current research status on the biological functions of TAs. Through a comprehensive understanding of this review, it is expected to pave the way for advancements in isolating and purifying high-quality TAs and, in turn, lay a foundation for contributing to the development of targeted probiotic therapies.


Assuntos
Parede Celular , Bactérias Gram-Positivas , Parede Celular/química , Bactérias Gram-Positivas/metabolismo , Glicosilação , Ácidos Teicoicos/química , Lipopolissacarídeos/química , Vias Biossintéticas , Polímeros/metabolismo
4.
Front Nutr ; 10: 1121310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950329

RESUMO

This article purposed to discuss the connection between microbiota and characteristic flavor of different fish sauces (Natural fermentation (WQ), koji outdoor fermentation (YQ), heat preservation with enzyme (BWE), and heat preservation with koji (BWQ)) at the early (3 months) and late stage (7 months). A total of 117 flavor compounds were determined according to SPME-GC-MS analysis. O2PLS-DA and VIP values were used to reveal 15 and 28 flavor markers of different fish sauces at 3 and 7 M of fermentation. Further, the possible flavor formation pathways were analyzed using metagenomic sequencing, and the key microbes associated with flavor formation were identified at the genetic level. The top 10 genera related to flavor generation, such as Lactobacillus, Staphylococcus, Enterobacter, etc., appeared to play a prominent part in the flavor formation of fish sauce. The difference was that only BWQ and BWE groups could produce ethyl-alcohol through amino acid metabolism, while YQ, BWE and BWQ groups could generate phenylacetaldehyde through the transformation of Phe by α-ketoacid decarboxylase and aromatic amino acid transferase. Our research contributes to clarifying the various metabolic roles of microorganisms in the flavor generation of fish sauce.

5.
Crit Rev Food Sci Nutr ; 63(25): 7564-7583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35253552

RESUMO

Fish sauce is a special flavored condiment formed by traditional fermentation of low-value fish in coastal areas, which are consumed and produced in many parts of the world, especially in Southeast Asia. In the process of fish sauce fermentation, the diversity of microbial flora and the complex metabolic reactions of microorganisms, especially lipid oxidation, carbohydrate fermentation and protein degradation, are accompanied by the formation of flavor substances. However, the precise reaction of microorganisms during the fersmentation process is difficult to accurately control in modern industrial production, which leads to the loss of traditional characteristic flavors in fermented fish sauces. This paper reviews the manufacturing processes, core microorganisms, metabolic characteristics and flavor formation mechanisms of fermented fish sauces at home and abroad. Various methods have been utilized to analyze and characterize the composition and function of microorganisms. Additionally, the potential safety issues of fermented fish sauces and their health benefits are also reviewed. Furthermore, some future directions and prospects of fermented fish sauces are also reviewed in this paper. By comprehensive understanding of this review, it is expected to address the challenges in the modern production of fish sauce thereby expanding its application in food or diet.


Assuntos
Alimentos , Alimentos de Soja , Animais , Fermentação , Dieta
6.
J Agric Food Chem ; 70(38): 11844-11859, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36112349

RESUMO

Globally, aquatic processing industries pay great attention to the production of aquatic proteins for the fulfillment of the nutritive requirements of human beings. Aquatic protein can replace terrestrial animal protein due to its high protein content, complete amino acids, unique flavor, high quality and nutritional value, and requirements of religious preferences. Due to the superior functional properties, an aquatic protein based delivery system has been proposed as a novel candidate for improving the absorption and bioavailability of bioactive substances, which might have potential applications in the food industry. This review outlines the extraction techniques for and functional properties of aquatic proteins, summarizes the potential modification technologies for interaction with polyphenols, and focuses on the application of aquatic-derived protein in delivery systems as well as their interaction with the gastrointestinal tract (GIT). The extraction techniques for aquatic proteins include water, salt, alkali/acid, enzyme, organic solvent, and ultrasound-assisted extraction. The quality and functionality of the aquatic proteins could be improved after modification with polyphenols via covalent or noncovalent interactions. Furthermore, some aquatic protein based delivery systems, such as emulsions, gels, films, and microcapsules, have been reported to enhance the absorption and bioavailability of bioactive substances by in vitro GIT, cell, and in vivo animal models. By promoting comprehensive understanding, this review is expected to provide a real-time reference for developing functional foods and potential food delivery systems based on aquatic-derived proteins.


Assuntos
Alimento Funcional , Polifenóis , Álcalis , Aminoácidos , Animais , Cápsulas , Géis , Humanos , Proteínas , Solventes , Água
7.
Food Funct ; 13(18): 9544-9558, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35997033

RESUMO

This study investigated the influence of carrier oils on the in vitro and in vivo bioavailability of PTE encapsulated in scallop gonad protein isolates (SGPIs)-epigallocatechin gallate (EGCG) conjugate stabilized emulsions. The SGPIs-EGCG stabilized emulsions were subjected to an in vitro simulated digestion, and the resulting corn oil and MCT micelles were used to evaluate the PTE transportation using the Caco-2 cell model. Both emulsions remarkably improved the bioaccessibility of PTE in the micelle phase. Nevertheless, corn oil emulsions increased trans-enterocyte transportation of PTE more efficiently than MCT emulsions. Furthermore, the maximum plasma concentrations of PTE and its metabolites in mice fed with PTE emulsions were prominently higher than those in mice fed with PTE solution, while the in vivo metabolic patterns of PTE in different oil-stabilized emulsions were different. Therefore, SGPIs-EGCG stabilized emulsions could enhance the bioavailability of PTE through controlled release, in which corn oil is more suitable than MCT.


Assuntos
Micelas , Pectinidae , Animais , Disponibilidade Biológica , Células CACO-2 , Catequina/análogos & derivados , Óleo de Milho/metabolismo , Preparações de Ação Retardada/metabolismo , Emulsões/metabolismo , Excipientes/metabolismo , Gônadas/metabolismo , Humanos , Camundongos , Óleos/metabolismo , Pectinidae/metabolismo , Proteínas/metabolismo , Estilbenos
8.
Food Chem X ; 14: 100344, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35669456

RESUMO

The potential of Lactiplantibacillus plantarum ZJ316 (ZJ316) as a starter culture for quality improvement and microbial community regulation in pickled mustard fermentation was elucidated in this study. Our results show that ZJ316 can deter the occurrence of nitrite peaks and maintain the nitrite content of pickled mustard at a low level (0.34 mg/kg). The headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry results indicate that ZJ316 gives a good flavor to pickled mustard. According to the 16S rDNA results, Firmicutes were the predominant microbiota after inoculation with ZJ316, and the abundances of Citrobacter, Enterobacter, and Proteus decreased simultaneously. In addition, antibacterial activity analysis showed that the supernatant of pickled mustard inoculated with ZJ316 had a significant inhibitory effect on Staphylococcus aureus D48, Escherichia coli DH5α, and Listeria monocytogenes LM1. In conclusion, L. plantarum ZJ316 has potential for use as an ideal starter in the process of vegetable fermentation.

9.
Front Nutr ; 9: 840780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571948

RESUMO

The traditional hydrodistillation (HD) and ultrasound-assisted pretreatment extraction (UAPE) methods were proposed to obtain essential oil (EO) from Tribute citrus (TC) peels. The Box-Behnken design was employed to optimize the HD and UAPE procedures. Moreover, gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) were applied to identify the discrepancy of the extraction methods. The yield of EO extracted by UAPE (114.02 mg/g) was significantly higher than that by HD (85.67 mg/g) (p < 0.01) undergoing 40 min short time-consuming UPAE. A total of 28 compounds were extracted from the TC peels as terpenes were the predominant components. d-Limonene was the most vital compound in the T. citrus essential oil (TCEO), accounting for 86.38% of the total volatile concentration in HD and 86.75% in UAPE, respectively, followed by α-pinene, sabinene, γ-myrcene, and ß-phellandrene. The chart of radar and graphic of the principal component analysis by E-nose displayed no significance, which was similar to the GC-MS results. This study demonstrated that UAPE is an efficient and short time-consuming method for TCEO extraction, which provides a promising method for the separation of EO from aromatic plant materials.

10.
J Food Sci ; 87(6): 2504-2514, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35603811

RESUMO

The complex coacervation between scallop (Patinopecten yessoensis) female gonad protein isolates (SFGPIs) and sodium alginate (SA) was determined by the turbidimetric method. The impact of pH, total biopolymer concentration, biopolymer blend ratio, and various salt ionic on the mechanisms governing the complex coacervation of SFGPIs-SA complexes were also investigated. For the SFGPIs:SA ratio of 2:1 without adding NaCl, insoluble and soluble complexes were observed at pH 5.8 (pHφ1 ) and pH 8.2 (pHc ) with the optimum biopolymer interactions appearing at pH 2.6 (pHopt ). The maximum turbidity value increased with the increment of the total biopolymer concentration from 0.37 to 1.83 until attaining the critical value (0.75%). As the blend ratios rose from 1:3 to 12:1, the critical pH values (pHc , pHφ1 , and pHopt ) moved to higher pH. Furthermore, the addition of NaCl led to a remarkable decrease in turbidity over the whole pH region in SFGPIs-SA complexes. Moreover, monovalent ions (Na+ and K+ ) had the same effect on the formation of the SFGPIs-SA complex, whereas the divalent cations (Mg2+ and Ca2+ ) lessened the complex formation in comparison with the monovalent ions. This study offers a methodological and theoretical basis for the design of complex SFGPIs-SA systems by understanding the complex coacervation under different conditions. PRACTICAL APPLICATION: In recent years, several protein-polysaccharides complexes have been widely applied in food and biological systems. Scallop (Patinopecten yessoensis) female gonads are deemed as good marine sources for developing protein matrices on account of their high protein content and nutrients. In our study, the effects of different conditions on the mechanisms governing the complex coacervation of SFGPI-SA mixtures were investigated, and the instability of the system could be overcome by understanding the conditions for SFGPIs/SA complex formation, which have a feasible role in developing marine source-protein as a functional food base such as kamaboko gels, can, sausage, fat substitutes, and delivery vehicles for bioactive compounds.


Assuntos
Alginatos , Pectinidae , Alginatos/análise , Animais , Biopolímeros/química , Feminino , Gônadas/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Pectinidae/química , Proteínas/análise , Cloreto de Sódio/análise , Eletricidade Estática
11.
Food Funct ; 13(3): 1551-1562, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35072202

RESUMO

Microbial contamination and nitrite accumulation are the two major concerns in the quality control of fermented vegetables. In the present study, a lactic acid bacteria strain Lactobacillus plantarum ZJ316 (ZJ316) was inoculated during Stachys sieboldii Miq. (SSM) fermentation, and the effects of ZJ316 on the quality and bacterial community of SSM during fermentation were investigated. It was observed that ZJ316 could avoid the occurrence of the nitrite peak and maintain the nitrite content of fermented SSM at a low level. Gas chromatography-mass spectrometry (GC-MS) results suggested that ZJ316 gave good flavor to the fermented SSM. 16S rDNA sequencing showed that Firmicutes was the dominant flora after ZJ316 inoculation, and the abundance of Proteobacteria decreased at the same time. At the level of the genus, SSM fermented by ZJ316 had a more obvious inhibitory effect on Pseudomonas on the 7th day compared with the naturally fermented SSM. Additionally, the effect of ZJ316-fermented SSM on gut microbiota modulation was also evaluated using an in vitro fecal fermentation system. The results revealed that ZJ316 had a relatively subtle influence on intestinal communities with a potentially positive impact on probiotics such as Lactobacillus and Bifidobacterium and a negative impact on Enterobacteriaceae. Furthermore, SSM fermented by ZJ316 promoted the production of short-chain fatty acids (SCFAs) in the human intestine. These results demonstrate that L. plantarum ZJ316 can be used as a good starter in the fermentation process of pickles.


Assuntos
Alimentos Fermentados , Lactobacillus plantarum , Probióticos , Stachys , Manipulação de Alimentos , Microbiologia de Alimentos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos
12.
Food Chem ; 370: 131371, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34656021

RESUMO

This study aimed to reveal the molecular mechanisms associated with off-flavor generation in sturgeon fillets treated by low temperature vacuum heating (LTVH). Label-free quantitative proteomics was used to identify 120 favor-related proteins, 27 proteins were screened as differentially expressed for bioinformatics analysis. 17 of KEGG pathways were identified. Particularly, proteins involved in proteasome and peroxisome were highly correlated with off-flavor formation. They were primarily implicated in the structures of proteins, including binding and proteasome pathways. The results indicated that the LTVH reduced the binding sites by down-regulating protease and superoxide dismutase expression. LTVH increased the myofibrillar protein and sulfhydryl content and decreased the total volatile basic nitrogen and thiobarbituric acid reactive substance, which confirmed that protein oxidation was related to off-flavor. This proteomics study provided new insights into the off-flavor of sturgeon with LTVH, and proposed potential link between biological processes and off-flavor formation.


Assuntos
Calefação , Proteômica , Federação Russa , Temperatura , Vácuo
13.
J Food Sci ; 86(9): 4001-4016, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34318481

RESUMO

Here, a novel decapeptide IVTNWDDMEK with Maillard reactivity derived from scallop Chlamys farreri mantle was identified. The structural characteristics and in vitro hepatoprotective effects of IVTNWDDMEK conjugated with ribose were further investigated. The changes in decapeptide structures were determined by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and atomic force microscopy (AFM), and the modification sites induced by Maillard reaction of IVTNWDDMEK and ribose were monitored by high performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS). Maillard reaction products (MRPs) of IVTNWDDMEK-ribose demonstrate hepatoprotective benefits through the suppression of DNA damage and apoptosis induced by oxidative stress in human HepG2 cells in addition to enhancing the antioxidant activities. Moreover, after treatment with decapeptide-ribose MRPs, the activities of cellular antioxidative enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione reductase (GSH-Rx) were remarkably increased, while the content of malondialdehyde (MDA) was decreased compared with H2 O2 - treated group, thereby enhancing the intracellular antioxidant defenses. These findings demonstrate the potential utilization of decapeptide IVTNWDDMEK-ribose MRPs as food antioxidants to suppress oxidative damage. PRACTICAL APPLICATION: In recent years, several food-derived bioactive peptides and their derivatives are regarded as good dietary antioxidants for reducing oxidative stress and improving liver function. Here, a novel Maillard reactive decapeptide IVTNWDDMEK, identified from scallop mantle hydrolysates by peptidomics in the previous study was synthesized. Then, the correlation between intercellular antioxidant activities and chemical structure changes of IVTNWDDMEK-ribose Maillard reaction conjugates was further studied. The preferable hepatoprotective activities of decapeptide IVTNWDDMEK-ribose MRPs indicated that these MRPs could be potentially utilized as food antioxidants or additives in the production of nutritional foods.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Peptídeos , Substâncias Protetoras , Ribose , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Peptídeos/farmacologia , Substâncias Protetoras/química , Ribose/química , Ribose/farmacologia , Espectrometria de Massas em Tandem
14.
J Sci Food Agric ; 101(14): 5948-5955, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33838054

RESUMO

BACKGROUND: Large yellow croaker (Pseudosciaena crocea) roe is the main by-product in the processing of large yellow croaker. Previous studies have found that its protein isolates are composed of vitellogenin, as well as vitellogenin B and C, having good functional properties. (-)-Epigallocatechin-3-gallate (EGCG) is a natural antioxidant component that can be combined with protein to improve antioxidant activity and structural characteristics of protein. RESULTS: EGCG was bound with the P. crocea roe protein isolate (pcRPI) by the free radical method to prepare the conjugate. The formation of pcRPI-EGCG conjugates was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography, which showed that the calculated weight-average molar masses of native-pcRPI and pcRPI-EGCG conjugates were 86.9 and 215.3 kDa, respectively. The results of fluorescence, ultraviolet, circular and infrared spectra indicated that the conjugation of EGCG with native-pcRPI changed the secondary and tertiary structure of native-pcRPI. The pcRPI-EGCG conjugates exhibited higher thermal stability than native-pcRPI. The radical scavenging and reducing power of native-pcRPI were increased by 2.0-2.5- and 1.4-fold, respectively, after the EGCG-grafting reaction. CONCLUSION: These results indicate that the binding of pcRPI and EGCG effectively improved the antioxidant properties and structural characteristics of the pcRPI. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Catequina/análogos & derivados , Proteínas de Peixes/química , Conservação de Alimentos/métodos , Conservantes de Alimentos/química , Óvulo/química , Animais , Catequina/química , Feminino , Conservação de Alimentos/instrumentação , Ovário/química , Perciformes , Conformação Proteica
15.
Food Chem ; 357: 129690, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33892362

RESUMO

The present study was aimed to investigate the effects of non-covalent interactions between scallop gonad protein isolates (SGPIs) and different concentrations (20, 120 and 240 µmol/g, protein basis) of four phenolic compounds, such as (-)-epigallocatechin gallate (EGCG), epicatechin 3-gallate (ECG), epigallocatechin (EGC), and catechin (C), regarding the structural and functional properties of the complex. Total sulfhydryl and surface hydrophobicity in SGPIs decreased by nearly 72% and 65% with 240 µmol/g EGCG, similar but less appreciable changes were produced by EGC, ECG and C. Fluorescence quenching and thermodynamic parameters suggested that hydrogen bond and van der Waals dominated the interaction process between SGPIs and EGCG, and the interaction was further studied by molecular docking. Moreover, EGCG-treated SGPIs digests exerted higher ABTS+• scavenging activity than that of ECG and EGC-treated SGPIs. These findings are helpful to reveal the binding mechanism of phenolics and SGPIs, and provide a theoretical basis for the application of SGPIs-phenolic complexes as functional food additives.

16.
J Food Sci ; 86(3): 792-802, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33565634

RESUMO

Various bond disrupting agents including NaCl, GuHCl, urea, and SDS were introduced to investigate the intermolecular interactions between scallop (Patinopecten yessoensis) male gonad hydrolysates (SMGHs) and κ-carrageenan (κ-C), which were monitored by changes in rheological property, water distribution, conformation characterization and microstructure by using rheometer, low field-NMR relaxometry, Fourier transform infrared (FTIR) spectroscopy, cryo-scanning electron microscopy (cryo-SEM), and confocal laser scanning microscopy. The results showed that the bond disrupting agents deteriorated the rheological property of SMGHs/κ-C in a dose-dependent manner. Indeed, at the same concentration of 2 M, NaCl deteriorated the SMGHs/κ-C more obviously than GuHCl and urea. In addition, SMGHs/κ-C with bond disrupting agents possessed higher relaxation times including T21 and T23 , indicating the migration to free water direction of bound and free water. Moreover, the FITR results showed the red-shift in water regions (amide A and B bands), amide I and II bands, and indicated the breakdown of hydrogen bonds and electrostatic interactions, indicating a disordered structure in SMGHs/κ-C by various bond disrupting agents. Furthermore, cryo-SEM results showed the change of SMGHs/κ-C from a homogeneous network to a looser and ruptured one with larger void spaces, and indicated the disrupted and tattered microstructure of SMGHs/κ-C by various bond disrupting agents. Additionally, SMGHs/κ-C as well showed less aggregates stained by RITC by bond disrupting agents. These results suggest that electrostatic interactions would be mainly involved in the maintenance of SMGHs/κ-C gel network. This study could provide theoretical and methodological basis for hydrogel products with modified gel strength and microstructure by understanding the intermolecular interactions in gel system. PRACTICAL APPLICATION: Scallop (Patinopecten yessoensis) male gonads as a high-protein part of scallop, is usually discarded during processing despite its edibility. In recent years, scallop male gonads are regarded as good sources to develop protein matrices due to their high protein content and numerous nutrients. In this study, scallop male gonad hydrolysates (SMGHs) were obtained by trypsin-treated process. The considerable gelation behavior of SMGHs indicated that the SMGHs could be potentially utilized as a novel thickener and additive in production of kamaboko gels, can, sausage and spread with marine flavor.


Assuntos
Carragenina/química , Géis/química , Pectinidae/química , Animais , Coloides , Gônadas/química , Hidrólise , Masculino , Proteínas/química , Alimentos Marinhos/análise , Eletricidade Estática , Água/análise
17.
Food Chem ; 336: 127687, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32771901

RESUMO

The electrostatic complex coacervation between scallop Patinopecten. yessoensis male gonad hydrolysates (SMGHs) and κ-carrageenan (κ-C) were monitored by using turbidimetry at various pH (1-12) and biopolymer mixing ratio (9:1-1:9). The pHc exhibited ratio-independent behavior, and pHφ1, pHmax exhibited ratio-dependent behavior, respectively. The decreasing ratio enhanced the gel strength of SMGHs/κ-C at higher pH while inversely at lower pH, ascribing to more SMGHs aggregates and stronger neutralization between positively charged patches in SMGHs and κ-C at lower pH and higher ratio. Moreover, SMGHs/κ-C gel at acid condition exhibited lower relaxation times (T21 and T23). Furthermore, the rheological and relaxation time T2 data were well associated with microscopy images which indicated that SMGHs/κ-C gel showed a well-distributed network structure at more acidic domains, supporting stronger gel rigidity and water-holding capacity.


Assuntos
Carragenina/química , Gônadas/química , Pectinidae/química , Animais , Concentração de Íons de Hidrogênio , Hidrólise , Masculino , Alimentos Marinhos/análise , Eletricidade Estática
18.
Food Res Int ; 137: 109659, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233238

RESUMO

The complex coacervation between scallop Patinopecten yessoensis male gonad hydrolysates (SMGHs) and κ-carrageenan (κ-C) as influenced by ionic strength (NaCl and KCl) were monitored by using turbidimetric analysis at pH 1-12. The optical density of SMGHs/κ-C complexes initially increased at lower ionic strength (0-0.5 M) whereas decreased at higher ionic strength (0.5-1.5 M) as a result of the salt-enhanced and salt-reduced effect, respectively. Both of pHc and pHφ1 exhibited ionic strength-dependent behavior that firstly shifted to acidic pH followed by an increase as salt increasing. Moreover, salt addition strongly promoted the gelation of SMGHs/κ-C which was mainly driven by electrostatic forces, as reflected by increasing storage modulus G' from 3621 to 6559 Pa, 2681-25631 Pa at 0.1 Hz and decreasing T23 relaxation time from 349.10 to 296.89 ms, 241.07-186.89 ms by 0-0.5 M NaCl/KCl, respectively. Furthermore, the rheological and relaxation time T2 data were well associated with microscopy images that SMGHs/κ-C gels with NaCl/KCl showed a denser network with more flocculation formation and larger pore sizes with thicker network wall, especially in KCl group, which indeed supported the gel elasticity. Taken together, this study could provide theoretical and methodological basis for new functional hydrogel products with modified gel strength and microstructure by understanding the complex coacervation in gel system.


Assuntos
Pectinidae , Cloreto de Sódio , Animais , Carragenina , Géis , Gônadas , Masculino
19.
J Food Sci ; 85(11): 3679-3689, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32990386

RESUMO

Sea urchin Mesocentrotus nudus, Glyptocidaris crenularis, and Strongylocentrotus intermedius gonad protein isolates (mnGPIs, gcGPIs, and siGPIs) were extracted by isoelectric solubilization/precipitation (ISP) from the defatted gonads, and their functional properties were compared. Sodium dodecyl sulfate polyacrylamide gel electrophoresis results showed the similar protein pattern between each protein isolate and defatted gonad, indicating the high efficiency of ISP processing for protein recovery. Amino acid profileconfirmed that the mnGPIs and siGPIs could be potential sources of essential amino acid in nature. As regard to functional properties, mnGPIs showed higher water- and oil- holding capacities followed bysiGPIs and gcGPIs and all protein isolates presented great foaming property. As for emulsifying activity index (EAI), mnGPIs, gcGPIs, and siGPIs showed the minimum solubility and EAI at pH 5, 3, and 4, respectively, and behaved a pH-dependent manner. The gcGPIs revealed the highest EAI from pH 6 to 8 among the samples. In addition, circular dichroism showed increased content of ß-sheet at the expense of α-helix and ß-turn, suggesting the structure denaturation of the protein isolates. Indeed, no statistical difference was observed between secondary structure of mnGPIs and siGPIs. Moreover, ISP processing increased free sulfhydryl content of sea urchin protein isolates, but no difference was observed among the samples. Furthermore, siGPIs revealed the highest amount of total sulfhydryl and disulfide bonds, whereas both defatted gonads and protein isolates from G. crenularis presented the maximum surface hydrophobicity. These results suggest that gonad protein isolates from three species of sea urchin possess various functionalities and therefore can be potentially applied in food system. PRACTICAL APPLICATION: Sea urchin M. nudus, G. crenularis, and S. intermedius gonads are edible, whereas the functional properties of protein isolates from sea urchin gonad remain unknown. In this case, the extraction and comparison of three species of sea urchin gonad protein isolates will not only confirm functional properties but also screen food ingredients with suitable functions. In this study, functionalities of protein isolates derived from M. nudus, G. crenularis, and S. intermedius gonads would provide potential application in bakery food and meat products or as emulsifier candidates in food system.


Assuntos
Gônadas/química , Proteínas/química , Ouriços-do-Mar/química , Animais , Ouriços-do-Mar/classificação , Strongylocentrotus/química
20.
Food Res Int ; 129: 108875, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036913

RESUMO

The colloidal delivery systems fabricated by emulsion containing natural proteins and lipids have been utilized to protect carotenoids as well as to release the carotenoids in the simulated in vitro gastrointestinal tract (GIT). In this study, ß-carotene (BC) was embedded into emulsions that were stabilized by scallop gonad protein isolates (SGPIs), and the emulsion droplets containing BC were then entrapped into calcium-alginate beads. The results showed that the oil-in-water emulsions coated by SGPIs only showed good stability at pH 7-8, while the emulsion-alginate beads remained relatively intact at pH 3-8. BC encapsulated in emulsions was extremely unstable and prone to degradation when stored at the comparatively higher temperature (37 °C), whereas the stability of BC was greatly enhanced through incorporation into emulsion-alginate beads. The digestion rate and extent of lipid droplets constructed within SGPIs-stabilized emulsion-alginate beads were slower than that in emulsions during GIT. The confocal laser scanning microscopy revealed that the lipid droplets in emulsions were aggregated after exposure to the mouth and gastric phases, while the emulsion-alginate beads maintained their spherical shape after exposure to the oral and gastric phases. Moreover, the free lipid droplets in the emulsions showed a higher bioaccessibility of BC (66%) than that in the emulsion-alginate beads (38%), whereas the BC transformation was on the contrary. The findings in this study indicated that SGPIs-stabilized emulsion in alginate beads can potentially be utilized for the encapsulation and controlled release of lipophilic bioactive compounds.


Assuntos
Alginatos/química , Gônadas/química , Pectinidae/química , Proteínas/química , beta Caroteno/química , Animais , Emulsificantes/química , Emulsões/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA