Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 8(1): 9047, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899566

RESUMO

This study aimed to investigate whether exosomes secreted by mouse GATA-4-expressing bone marrow mesenchymal stem cells (BMSCs) could induce BMSC differentiation into myocyte precursors, decrease cardiomyocyte apoptosis, and improve cardiac function following myocardial infarction (MI). BMSCs were transduced with a lentivirus carrying a doxycycline (DOX)-inducible GATA-4 or control lentivirus, and secreted exosomes from these BMSCs were collected and co-cultured with BMSCs or cardiomyocytes under hypoxic and serum free conditions. Furthermore, exosomes were injected into mice 48 h after MI. Cardiac function was evaluated by echocardiography at 48, 72, and 96 h after exosome treatment. Quantitative PCR showed that co-culture of BMSCs with GATA-4-BMSC exosomes increased cardiomyocyte-related marker expression. Co-culture of GATA-4-BMSC exosomes with cardiomyocytes in anoxic conditions decreased apoptosis as detected by flow cytometry. Injection of GATA-4-BMSC exosomes in mice 48 h after MI increased cardiac function over the next 96 h; increased cardiac blood vessel density and number of c-kit-positive cells and decreased apoptotic cardiomyocyte cells were also observed. Differential expression of candidate differentiation- and apoptosis-related miRNAs and proteins that may mediate these effects was also identified. Exosomes isolated from GATA-4-expressing BMSCs induce differentiation of BMSCs into cardiomyocyte-like cells, decrease anoxia-induced cardiomyocyte apoptosis, and improve myocardial function after infarction.


Assuntos
Exossomos/metabolismo , Fator de Transcrição GATA4/metabolismo , Coração/fisiopatologia , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Apoptose/genética , Diferenciação Celular/genética , Hipóxia Celular , Células Cultivadas , Técnicas de Cocultura , Exossomos/genética , Exossomos/transplante , Fator de Transcrição GATA4/genética , Expressão Gênica , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA