Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 894: 148025, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38007163

RESUMO

Rapeseed (Brassica napus L.) is susceptible to nutrient stresses during growth and development; however, the CPA (cation proton antiporter) family genes have not been identified in B. napus and their biological functions remain unclear. This study was aimed to identify the molecular characteristics of rapeseed CPAs and their transcriptional responses to multiple nutrient stresses. Through bioinformatics analysis, 117 BnaCPAs, consisting of three subfamilies: Na+/H+ antiporter (NHX), K+ efflux antiporter (KEA), and cation/H+ antiporter (CHX), were identified in the rapeseed genome. Transcriptomic profiling showed that BnaCPAs, particularly BnaNHXs, were transcriptionally responsive to diverse nutrient stresses, including Cd toxicity, K starvation, salt stress, NH4+ toxicity, and low Pi. We found that the salt tolerance of the transgenic rapeseed lines overexpressing BnaA05.NHX2 was significantly higher than that of wild type. Subcellular localization showed that BnaA05.NHX2 was localized on the tonoplast, and TEM combined with X-ray energy spectrum analysis revealed that the vacuolar Na+ concentrations of the BnaA05.NHX2-overexpressing rapeseed plants were significantly higher than those of wild type. The findings of this study will provide insights into the complexity of the BnaCPA family and a valuable resource to explore the in-depth functions of CPAs in B. napus.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Antiporters/genética , Prótons , Brassica rapa/genética , Vacúolos , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
2.
Chemosphere ; 63(5): 860-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16169044

RESUMO

A laboratory experiment was conducted to study effects of urea fertilizer on the chemical composition of soil solutions over time, and to determine Al toxicity as a function of rates of urea application. The experiment revealed that addition of urea fertilizer to soils caused drastic changes in soil pH during the hydrolysis and nitrification stages of urea transformation in the experiment. These pH changes, depending on the N rate of urea application and time courses, had variable effects on soil exchangeable Al, extracted with artificial solutions containing 1 mol l(-1) KCl. The Al mobilization rate could be resolved into two phases: A declining phase for Al was attributed to the urea-induced hydrolysis while a second rising phase was dependent with the nitrification of added N fertilizer. The decreases in exchangeable Al reached the greatest in 4-7 days after fertilization, consistent with soil pH increase. Decreased Al availability had been observed as a consequence of increasing urea addition and soil pH when using Root elongation of maize seedlings as the estimators. Results from the present study demonstrate that urea fertilizer to the surface of soils may lead to a temporary immobilization of Al and, therefore, alleviated Al toxicity to plant seedlings.


Assuntos
Alumínio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Poluentes do Solo/análise , Ureia/farmacologia , Alumínio/antagonistas & inibidores , China , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA