RESUMO
Background: Aged women and premature ovarian insufficiency (POI) patients have residual dormant primordial follicles that are hard to be activated through a physiological process. However, there are no effective and safe drugs to help them. Methods: We used the in vitro culture model of newborn mouse ovaries to identify the drugs that promote primordial follicle activation and study its mechanisms. It was verified by in vivo injection model of newborn mice and in vitro culture model of human ovarian tissue. In addition, we used the aged mice as a low infertility model to verify the effects of primordial follicle activation, and fertility by drugs. Results: Eleven metallic compounds activated mouse primordial follicles, and the five most effective compounds were selected for further study. Thapsigargin (TG), CrCl3, MnCl2, FeCl3 and ZnSO4 increased the levels of the glycolysis-related proteins (glucose transporter type 4, GLUT4; hexokinase 1, HK1; pyruvate kinase M2, PKM2; phosphofructokinase, liver type, PFKL), phosphorylated mammalian target of rapamycin (p-mTOR) in cultured mouse ovaries. The compound-promoted p-mTOR levels could be completely blocked by 2-DG (the inhibitor of glycolysis). The compounds also increased the levels of phosphorylated protein kinase B (p-Akt). TG-, CrCl3- and FeCl3-promoted p-Akt levels, but not MnCl2- and ZnSO4- promoted p-Akt levels, could be completely blocked by ISCK03 (the inhibitor of proto-oncogenic receptor tyrosine kinase, KIT). The injection of newborn mice with the compounds also activated primordial follicles and increased the levels of the glycolysis-related proteins, p-mTOR, and p-Akt. The oral administration of the compounds in adolescent and aged mice promoted primordial follicle activation, and had no obvious side effect. Importantly, ZnSO4 also increased ovulated oocytes, oocyte quality and offspring in aged mice. Furthermore, the compounds promoted human primordial follicle activation and increased the levels of the glycolysis-related proteins, p-mTOR, and p-Akt. Conclusion: The metallic compounds activate primordial follicles through the glycolysis-dependent mTOR pathway and/or the PI3K/Akt pathway, and the oral administration of ZnSO4 enhances fertility in aged mice. We suggest that these metallic compounds may be oral drugs to ameliorate fertility deficits in aged women and POI patients.
Assuntos
Insuficiência Ovariana Primária , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Feminino , Camundongos , Adolescente , Idoso , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Insuficiência Ovariana Primária/tratamento farmacológico , Fertilidade , Mamíferos/metabolismoRESUMO
In mammals, dormant primordial follicles represent the ovarian reserve throughout reproductive life. In vitro activation of dormant primordial follicles has been used to treat patients with premature ovarian insufficiency (POI). However, there remains a lack of effective strategies to stimulate follicle activation in vivo. In this study, we used an in vitro ovarian culture system and intraperitoneal injection to study the effect of lithium treatment on primordial follicle activation. Lithium increased the number of growing follicles in cultured mouse ovaries and promoted pre-granulosa cell proliferation. Furthermore, lithium significantly increased the levels of phosphorylated protein kinase B (Akt) and the number of oocytes with forkhead Box O3a (FOXO3a) nuclear export. Inhibition of the phosphatidylinositol 3 kinase (PI3K)/Akt pathway by LY294002 reversed lithium-promoted mouse primordial follicle activation. These results suggest that lithium promotes mouse primordial follicle activation by the PI3K/Akt signaling. Lithium also promoted primordial follicle activation and increased the levels of p-Akt in mouse ovaries in vivo and in human ovarian tissue cultured in vitro. Taken together, lithium promotes primordial follicle activation in mice and humans by the PI3K/Akt signaling. Lithium might be a potential oral drug for treating infertility in POI patients with residual dormant primordial follicles.