Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 28(1): 295, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38827477

RESUMO

Ammonia (NH3) is an irritating and harmful gas that affects cell apoptosis and autophagy. Sirtuin 5 (SIRT5) has multiple enzymatic activities and regulates NH3-induced autophagy in tumor cells. In order to determine whether SIRT5 regulates NH3-induced bovine mammary epithelial cell apoptosis and autophagy, cells with SIRT5 overexpression or knockdown were generated and in addition, bovine mammary epithelial cells were treated with SIRT5 inhibitors. The results showed that SIRT5 overexpression reduced the content of NH3 and glutamate in cells by inhibiting glutaminase activity in glutamine metabolism, and reduced the ratio of ADP/ATP. The results in the SIRT5 knockdown and inhibitor groups were comparable, including increased content of NH3 and glutamate in cells by activating glutaminase activity, and an elevated ratio of ADP/ATP. It was further confirmed that SIRT5 inhibited the apoptosis and autophagy of bovine mammary epithelial cells through reverse transcription-quantitative PCR, western blot, flow cytometry with Annexin V FITC/PI staining and transmission electron microscopy. In addition, it was also found that the addition of LY294002 or Rapamycin inhibited the PI3K/Akt or mTOR kinase signal, decreasing the apoptosis and autophagy activities of bovine mammary epithelial cells induced by SIRT5-inhibited NH3. In summary, the PI3K/Akt/mTOR signal involved in NH3-induced cell autophagy and apoptosis relies on the regulation of SIRT5. This study provides a new theory for the use of NH3 to regulate bovine mammary epithelial cell apoptosis and autophagy, and provides guidance for improving the health and production performance of dairy cows.

2.
J Neurointerv Surg ; 16(3): 308-312, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36882320

RESUMO

BACKGROUND: Vertebral-basilar artery dissecting aneurysms (VADAs) are an uncommon phenomenon in all fields of cerebrovascular disease. The flow diverter (FD) can be used as an endoluminal reconstruction device that promotes neointima formation at the aneurysmal neck and preserves the parent artery. To date, imaging examinations such as CT angiography, MR angiography, and DSA are the main methods used to evaluate the vasculature of patients. However, none of these imaging methods can reveal the situation of neointima formation, which is of great importance in evaluating occlusion of VADAs, especially those treated with a FD. METHODS: Three patients were included in the study from August 2018 to January 2019. All patients underwent preprocedural, postprocedural, and follow-up evaluations with high resolution MRI, DSA, and optical coherence tomography (OCT), as well as the formation of intima on the surface of the scaffold at the 6 month follow-up. RESULTS: Preprocedural, postoperative, and follow-up high resolution MRI, DSA, and OCT of all three cases successfully evaluated occlusion of the VADAs and occurrence of in stent stenosis from different views of intravascular angiography and neointima formation. CONCLUSIONS: OCT was feasible and useful to further evaluate VADAs treated with FD from a near pathological perspective, which may contribute toward guiding the duration of antiplatelet medication and early intervention of in stent stenosis.


Assuntos
Dissecção Aórtica , Embolização Terapêutica , Procedimentos Endovasculares , Aneurisma Intracraniano , Dissecação da Artéria Vertebral , Humanos , Resultado do Tratamento , Aneurisma Intracraniano/terapia , Aneurisma Intracraniano/cirurgia , Artéria Basilar , Tomografia de Coerência Óptica , Constrição Patológica , Neointima , Angiografia Cerebral , Dissecação da Artéria Vertebral/diagnóstico por imagem , Dissecação da Artéria Vertebral/cirurgia , Stents , Embolização Terapêutica/métodos , Seguimentos , Procedimentos Endovasculares/métodos
3.
Food Chem ; 439: 138101, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043286

RESUMO

In milk, fat exists in the form of milk fat globules (MFGs). The average size (average fat globules of different particle sizes) is the most common parameter when describing MFG size. There are different views on whether there is a correlation between MFG size and milk fat content. Is the MFG size correlated with milk fat content in ruminants? To address this question, we conducted two experiments. In experiment Ⅰ, dairy cows (n = 40) and dairy goats (n = 30) were each divided into a normal group and a low-fat group according to the milk fat content. In experiment Ⅱ, dairy cows (n = 16) and dairy goats (n = 12) were each divided into a normal group and a conjugated linoleic acid (CLA)-induced low-fat group. The normal groups were fed a basal diet, and the CLA-induced low-fat groups were fed the basal diet + 300 g/d CLA (cows) or the basal diet + 90 g/d CLA (goats). In both experiments, we determined the correlation between MFG size and milk composition and MFG distribution. The results showed that in the normal and low-fat groups of cows and goats, MFG size was not correlated with milk fat, protein, or lactose content or fat-to-protein ratio. Additionally, there was no difference in the distribution of large, medium, and small MFGs (P > 0.05). However, in the CLA-induced low-fat groups, we found a correlation between MFG size and milk fat content and fat-to-protein ratio (R2 > 0.3). Moreover, there was a significant change in the size distribution of MFGs. Therefore, in natural milk, MFG size was not correlated with milk fat content. Following CLA supplementation, MFG size was correlated with milk fat content. Our findings revealed that CLA and not milk fat affects MFG distribution and size.


Assuntos
Lactação , Ácidos Linoleicos Conjugados , Feminino , Bovinos , Animais , Ácidos Graxos/metabolismo , Leite/metabolismo , Dieta/veterinária , Cabras/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Suplementos Nutricionais
4.
J Dairy Sci ; 106(12): 9868-9878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678795

RESUMO

Rumen-protected choline (RPC) supplementation in the periparturient period has in some instances prevented and alleviated fatty liver disease in dairy cows. Mechanistically, however, it is unclear how choline prevents the accumulation of lipid droplets (LD) in liver cells. In this study, primary liver cells isolated from liver tissue obtained via puncture biopsy from 3 nonpregnant mid-lactation multiparous Holstein cows (∼160 d postpartum) were used. Analyses of LD via oil red O staining, protein abundance via Western blotting, and phospholipid content and composition measured by thin-layer chromatography and HPLC/mass spectrometry were performed in liver cells cultured in choline-deficient medium containing 150 µmol/L linoleic acid for 24 h. In a subsequent experiment, lipophagy was assessed in liver cells cultured with 30, 60, or 90 µmol/L choline-chloride. All data were analyzed statistically using SPSS 20.0 via t-tests or one-way ANOVA. Compared with liver cells cultured in Dulbecco's Modified Eagle Medium alone, choline deficiency increased the average diameter of LD (1.59 vs. 2.10 µm), decreased the proportion of small LD (<2 µm) from 75.3% to 56.6%, and increased the proportion of large LD (>4 µm) from 5.6% to 15.0%. In addition, the speed of LD fusion was enhanced by the absence of choline. Among phospholipid species, the phosphatidylcholine (PC) content of liver cells decreased by 34.5%. Seventeen species of PC (PC [18:2_22:6], PC [15:0_16:1], PC [14:0_20:4], and so on) and 6 species of lysophosphatidylcholine (LPC; LPC [15:0/0:0]), PC (22:2/0:0), LPC (20:2/0:0), and so on] were decreased, while PC (14:1_16:1) and LPC (0:0/20:1) were increased. Choline deficiency increased the triglyceride (TAG) content (0.57 vs. 0.39 µmol/mg) in liver cells and increased the protein abundance of sterol regulatory element binding protein 1, sterol regulatory element binding protein cleavage activation protein, and fatty acid synthase by 23.5%, 17%, and 36.1%, respectively. Upon re-supplementation with choline, the phenotype of LD (TAG content, size, proportion, and phospholipid profile) was reversed, and the ratio of autophagy marker LC3II/LC3I protein was significantly upregulated in a dose-dependent manner. Overall, at least in vitro in mid-lactation cows, these data demonstrated that PC synthesis is necessary for normal LD formation, and both rely on choline availability. According to the limitation of the source of liver cells used, further work should be conducted to ascertain that these effects are applicable to liver cells from postpartum cows, the physiological stage where the use of RPC has been implemented for the prevention and treatment of fatty liver.


Assuntos
Doenças dos Bovinos , Deficiência de Colina , Feminino , Bovinos , Animais , Deficiência de Colina/metabolismo , Deficiência de Colina/veterinária , Gotículas Lipídicas/metabolismo , Colina/farmacologia , Colina/metabolismo , Lactação/fisiologia , Fígado/metabolismo , Fosfolipídeos/análise , Suplementos Nutricionais/análise , Dieta/veterinária , Rúmen/metabolismo , Leite/química , Doenças dos Bovinos/metabolismo
5.
J Vis Exp ; (193)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36971432

RESUMO

Lipid droplets (LDs) are organelles that play an important role in lipid metabolism and neutral lipid storage in cells. They are associated with a variety of metabolic diseases, such as obesity, fatty liver disease, and diabetes. In hepatic cells, the sizes and numbers of LDs are signs of fatty liver disease. Moreover, the oxidative stress reaction, cell autophagy, and apoptosis are often accompanied by changes in the sizes and numbers of LDs. As a result, the dimensions and quantity of LDs are the basis of the current research regarding the mechanism of LD biogenesis. Here, in fatty acid-induced bovine hepatic cells, we describe how to use oil red O to stain LDs and to investigate the sizes and numbers of LDs. The size distribution of LDs is statistically analyzed. The process of small LDs fusing into large LDs is also observed by a live cell imaging system. The current work provides a way to directly observe the size change trend of LDs under different physiological conditions.


Assuntos
Gotículas Lipídicas , Hepatopatia Gordurosa não Alcoólica , Animais , Bovinos , Gotículas Lipídicas/metabolismo , Hepatócitos/metabolismo , Obesidade/metabolismo , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/metabolismo
6.
Food Funct ; 14(5): 2304-2312, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752527

RESUMO

In mammary epithelial cells, milk fat is synthesized as lipid droplets and secreted in the form of globules. Milk fat globules (MFGs) are covered by a lipid-protein membrane known as the milk fat globule membrane (MFGM). We randomly divided 12 Holstein cows into control and conjugated linoleic acid (CLA) groups. The control group was fed a basal diet, while the CLA group was fed the basal diet + CLA (15 g per kg DM) for 10 days. Cow performance, milk composition, and MFG size were measured daily. On day 10, we extracted MFGM proteins (n = 3) and identified them via quantitative proteomic analysis. We investigated the effects of the MFGM proteins from control and CLA-treated milk on the lipid droplet formation in MAC-T cells. Compared with the control group, the CLA group had reduced milk fat content (3.39 g/100 mL vs. 2.45 g/100 mL) and MFG size parameters (D[4,3] of 3.85 µm vs. 3.37 µm; D[3,2] of 3.24 µm vs. 2.83 µm). The specific surface area (SSA) increased in the CLA group. A total of 361 differentially expressed proteins were identified in the CLA group by iTRAQ quantitative proteomic analysis. Among these proteins, 100 were upregulated and 251 were downregulated (p < 0.05). In MAC-T cells, CLA-MFGM proteins increased the diameter of the lipid droplets to 1.32 µm. CLA-MFGM proteins decreased the proportion of the small lipid droplets (15.33% vs. 47.78%) and increased the proportion of the large lipid droplets (25.04% vs. 11.65%). CLA-MFGM proteins promoted lipid droplet fusion. Therefore, MFGM proteins play an important role in the regulation of the lipid droplet size.


Assuntos
Ácidos Linoleicos Conjugados , Gotículas Lipídicas , Feminino , Bovinos , Animais , Gotículas Lipídicas/metabolismo , Proteínas do Leite/metabolismo , Proteômica , Glicolipídeos/metabolismo , Células Epiteliais/metabolismo , Lactação , Ácidos Linoleicos Conjugados/farmacologia
7.
J Dairy Sci ; 105(11): 9179-9190, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36175227

RESUMO

Milk fat globule membrane (MFGM) proteins surround the triacylglycerol core comprising milk fat globules (MFG). We previously detected a decrease in the size of fat globules during conjugated linoleic acid (CLA)-induced milk fat depression (MFD), and other studies have reported that some MFGM proteins play a central role in regulating mammary cellular lipid droplet size. However, little is known about the relationship between MFD, MFG size, and MFGM proteins in bovine milk. The aim of this study was to investigate the profile of MFGM proteins during MFD induced by CLA. Sixteen mid-lactating Holstein cows (145 ± 24 d in milk) with similar body condition and parity were divided into control and CLA groups over a 10-d period. Cows were fed a basal diet (control, n = 8) or control plus 15 g/kg of dry matter (DM) CLA (n = 8) to induce MFD. Cow performance, milk composition, and MFG size were measured daily. On d 10, MFGM proteins were extracted and identified by quantitative proteomic analysis, and western blotting was used to verify a subset of the identified MFGM proteins. Compared with controls, supplemental CLA did not affect milk production, DM intake, or milk protein and lactose contents. However, CLA reduced milk fat content (3.73 g/100 mL vs. 2.47 g/100 mL) and the size parameters volume-related diameter D[4,3] (3.72 µm vs. 3.35 µm) and surface area-related diameter D[3,2] (3.13 µm vs. 2.80 µm), but increased specific surface area of MFG (1,905 m2/kg vs. 2,188 m2/kg). In total, 177 differentially expressed proteins were detected in milk from cows with CLA-induced MFD, 60 of which were upregulated and 117 downregulated. Correlation analysis showed that MFG size was negatively correlated with various proteins, including XDH and FABP3, and positively correlated with MFG-E8, RAB19, and APOA1. The results provide evidence for an important role of MFGM proteins in regulating MFG diameter, and they facilitate a mechanistic understanding of diet-induced MFD.


Assuntos
Ácidos Linoleicos Conjugados , Gravidez , Feminino , Bovinos , Animais , Ácidos Linoleicos Conjugados/farmacologia , Gotículas Lipídicas/metabolismo , Lactação , Lactose , Proteínas de Membrana , Proteômica , Depressão , Ácidos Graxos/metabolismo , Proteínas do Leite/análise , Triglicerídeos
8.
Res Vet Sci ; 149: 1-10, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35714559

RESUMO

Lipopolysaccharide (LPS) is an important inflammatory and infected factor of bacterial mastitis, which treated bovine mammary epithelial cells (MAC-T) in our previous studies, as mastitis cells model in vitro. Erythropoietin (EPO) is a well-known hematopoietic hormone with antioxidative, anti-apoptotic, and anti-inflammatory roles. We hypothesized that EPO might regulate the apoptosis and autophagy to attenuate the inflammation of mastitis. Western blot, RT-PCR, transmission electron microscope analysis and Annexin V-FITC/PI were used to evaluate the regulation of EPO on apoptosis and autophagy in inflammatory MAC-T cells. These results demonstrated that EPO promoted the proliferation of MAC-T cells. Meanwhile, EPO had a better anti-inflammatory effect in MAC-T cells with LPS treatment. Certainly, EPO also showed anti-apoptotic and anti-autophagic effects. Interestingly, we found that the beneficial effect of EPO on inflammatory MAC-T cells depended on the PI3K/Akt/mTOR signaling pathway, which was involved in the regulation of apoptosis and autophagy. Generally, this study provides an insight for EPO to inhibit apoptosis and autophagy of inflammatory MAC-T cells via PI3K/Akt/mTOR signaling pathway.


Assuntos
Doenças dos Bovinos , Eritropoetina , Mastite , Animais , Apoptose , Autofagia , Bovinos , Eritropoetina/farmacologia , Feminino , Lipopolissacarídeos/farmacologia , Mastite/veterinária , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo
9.
Autophagy ; 18(8): 1801-1821, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34822318

RESUMO

Alphaherpesvirus infection results in severe health consequences in a wide range of hosts. USPs are the largest subfamily of deubiquitinating enzymes that play critical roles in immunity and other cellular functions. To investigate the role of USPs in alphaherpesvirus replication, we assessed 13 USP inhibitors for PRV replication. Our data showed that all the tested compounds inhibited PRV replication, with the USP14 inhibitor b-AP15 exhibiting the most dramatic effect. Ablation of USP14 also influenced PRV replication, whereas replenishment of USP14 in USP14 null cells restored viral replication. Although inhibition of USP14 induced the K63-linked ubiquitination of PRV VP16 protein, its degradation was not dependent on the proteasome. USP14 directly bound to ubiquitin chains on VP16 through its UBL domain during the early stage of viral infection. Moreover, USP14 inactivation stimulated EIF2AK3/PERK- and ERN1/IRE1-mediated signaling pathways, which were responsible for VP16 degradation through SQSTM1/p62-mediated selective macroautophagy/autophagy. Ectopic expression of non-ubiquitinated VP16 fully rescued PRV replication. Challenge of mice with b-AP15 activated ER stress and autophagy and inhibited PRV infection in vivo. Our results suggested that USP14 was a potential therapeutic target to treat alphaherpesvirus-induced infectious diseases.Abbreviations ATF4: activating transcription factor 4; ATF6: activating transcription factor 6; ATG5: autophagy related 5; ATG12: autophagy related 12; CCK-8: cell counting kit-8; Co-IP: co-immunoprecipitation; CRISPR: clustered regulatory interspaced short palindromic repeat; Cas9: CRISPR associated system 9; DDIT3/CHOP: DNA-damage inducible transcript 3; DNAJB9/ERdj4: DnaJ heat shock protein family (Hsp40) member B9; DUBs: deubiquitinases; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EP0: ubiquitin E3 ligase ICP0; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum (ER) to nucleus signaling 1; FOXO1: forkhead box O1; FRET: Förster resonance energy transfer; HSPA5/BiP: heat shock protein 5; HSV: herpes simplex virus; IE180: transcriptional regulator ICP4; MAP1LC3/LC3: microtube-associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; PPP1R15A/GADD34: protein phosphatase 1, regulatory subunit 15A; PRV: pseudorabies virus; PRV gB: PRV glycoprotein B; PRV gE: PRV glycoprotein E; qRT-PCR: quantitative real-time polymerase chain reaction; sgRNA: single guide RNA; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: tissue culture infective dose; UB: ubiquitin; UBA: ubiquitin-associated domain; UBL: ubiquitin-like domain; UL9: DNA replication origin-binding helicase; UPR: unfolded protein response; USPs: ubiquitin-specific proteases; VHS: virion host shutoff; VP16: viral protein 16; XBP1: X-box binding protein 1; XBP1s: small XBP1; XBP1(t): XBP1-total.


Assuntos
Alphaherpesvirinae , Autofagia , Estresse do Retículo Endoplasmático , Proteína Vmw65 do Vírus do Herpes Simples , Ubiquitina Tiolesterase , Alphaherpesvirinae/patogenicidade , Alphaherpesvirinae/fisiologia , Animais , Proliferação de Células , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Macroautofagia , Camundongos , Proteína Sequestossoma-1 , Ubiquitina Tiolesterase/metabolismo
10.
Biotechnol Lett ; 43(11): 2111-2129, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34590222

RESUMO

An ideal rAAV gene editing system not only effectively edits genes at specific site, but also prevents the spread of the virus from occurring off-target or carcinogenic risks. This is important for gene editing research at specific site in vivo. We report a single rAAV containing SaCas9 and guide RNAs under the control of subtle EF1a and tRNA promoters. The capacity of rAAV was compressed, and the editing efficiency was similar to that of the classical Cas9 system in vitro and in vivo. And we inserted the sequence of the green fluorescent protein eGFP into rAAV. The number of cells infected with the rAAV and the region in which the rAAV spreads were known by the fluorescent expression of eGFP in cells. In addition, we demonstrated that myostatin gene in the thigh muscles of C57BL/10 mice was knocked out by the rAAV9-SaCas9 system to make muscle mass increased obviously. The protein eGFP into rAAV has significant implications for our indirect analysis of the editing efficiency of SaCas9 in the genome of the target tissue and reduces the harm caused by off-target editing and prevents other tissue mutations. The rAAV system has substantial potential in improving muscle mass and preventing muscle atrophy.


Assuntos
Sistemas CRISPR-Cas/genética , Dependovirus/genética , Edição de Genes/métodos , Vetores Genéticos/genética , Músculo Esquelético/fisiologia , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miostatina/genética
11.
Res Vet Sci ; 136: 622-630, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33930632

RESUMO

Ammonia is a harmful gas with a pungent odor, participates in the regulation of a variety of apoptosis and autophagy, which in turn affects the growth and differentiation of cells. To test the regulation of NH3 on the apoptosis and autophagy of mammary epithelial cells, we selected NH4Cl as NH3 donor in vitro model. MTT and CCK-8 assay kits were employed to detect cell activity. Real-time quantitative PCR and western blot methods were used to detect the abundance of inflammatory molecules, apoptosis markers, and autophagy genes. We selected TUNEL kit and the Annexin-FITC/PI method to detect apoptosis. TEM analysis was used to detect autophagic vesicles, and MDC stain evaluated the formation of autophagosome. The results indicated that NH4Cl reduced cell viability in a concentration-dependent manner and promoted cell inflammatory response, apoptosis, and autophagy. NH4Cl stimulation notable increased the autophagosomes number. Interestingly, we also detected that the addition of LY294002 and Rapamycin inhibited the PI3K/Akt pathway and the mTOR pathway, respectively, resulting in changes in both apoptosis and autophagy. Therefore, we draw a conclusion that NH3 may regulate the apoptosis and autophagic response of bovine mammary epithelial cells through the PI3K/Akt/mTOR signaling pathway. Further investigations on ammonia's function in other physiological respects, will be critical to provide theoretical help for the improvement of production performance. It will be also helpful for controlling the harmful gas ammonia concentration in the livestock house to protect the health of dairy cows.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Cloreto de Amônio/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
12.
Biol Trace Elem Res ; 199(1): 113-119, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32328970

RESUMO

Supplementation with selenium is common for dairy cows, but the importance of selenium source is not clear. This study aimed to compare nano-selenium (Nano-Se) and sodium selenite supplements for dairy cows on lactation performance, milk Se levels and selenoprotein (Sel) gene expression. Twelve multiparous Holstein cows were randomly divided into two groups: a control group fed a basal diet plus 0.30 mg Se/kg of DM as sodium selenite or Nano-Se for 30 days. Dry matter intake, milk yield and composition were not affected by dietary Se source (P > 0.05); however, the milk total Se levels and milk glutathione peroxidase (GSH-Px) activities were higher with Nano-Se supplementation than sodium selenite (P < 0.05). At the end of the experiment, Nano-Se supplementation significantly increased plasma Se levels and GSH-Px activity, compared with the sodium selenite supplement. The mRNA expression levels of glutathione peroxidase 1, 2 and 4; thioredoxin reductase 2 and 3; and selenoproteins W, T, K and F were markedly upregulated (P < 0.05) in the mammary gland of the Nano-Se group. Thus, the source of selenium plays an important role in the antioxidant status and in particular the Sel gene expression in the mammary glands of dairy cows, both being stimulated by nano sources.


Assuntos
Leite , Selênio , Ração Animal/análise , Animais , Bovinos , Suplementos Nutricionais , Feminino , Glutationa Peroxidase/genética , Lactação , Selênio/farmacologia , Selenoproteínas/genética , Transcriptoma
13.
J Anim Sci Biotechnol ; 11: 72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637097

RESUMO

BACKGROUND: Milk lipids originate from cytoplasmic lipid droplets (LD) that are synthesized and secreted from mammary epithelial cells by a unique membrane-envelopment process. Butyrophilin 1A1 (BTN1A1) is one of the membrane proteins that surrounds LD, but its role in bovine mammary lipid droplet synthesis and secretion is not well known. METHODS: The objective was to knockout BTN1A1 in bovine mammary epithelial cells (BMEC) via the CRISPR/Cas9 system and evaluate LD formation, abundance of lipogenic enzymes, and content of cell membrane phospholipid (PL) species. Average LD diameter was determined via Oil Red O staining, and profiling of cell membrane phospholipid species via liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Lentivirus-mediated infection of the Cas9/sgRNA expression vector into BMEC resulted in production of a homozygous clone BTN1A1 (-/-) . The LD size and content decreased following BTN1A1 gene knockout. The mRNA abundance of fatty acid synthase (FASN) and peroxisome proliferator-activated receptor-gamma (PPARG) was downregulated in the BTN1A1 (-/-) clone. Subcellular analyses indicated that BTN1A1 and LD were co-localized in the cytoplasm. BTN1A1 gene knockout increased the percentage of phosphatidylethanolamine (PE) and decreased phosphatidylcholine (PC), which resulted in a lower PC/PE ratio. CONCLUSIONS: Results suggest that BTN1A1 plays an important role in regulating LD synthesis via a mechanism involving membrane phospholipid composition.

14.
Prostaglandins Other Lipid Mediat ; 149: 106420, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31953015

RESUMO

The accumulation of lipid droplets (LDs) in the cytoplasm plays an important role in energy balance, membrane synthesis and cell signal transduction. The aim of this study was to investigate the profile of phospholipids after SCAP-induced LD formation in bovine mammary epithelial cells (BMECs). A shRNA-SCAP vector and a SCAP/SREBP vector were used to knock down and overexpress the SCAP gene in BMECs prior to evaluating the effects on LDs using Western blotting, real-time PCR, LD staining and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The average LD diameter was determined following oil red O staining. The overexpression of SCAP increased the abundance of SCD, ACACA and FASN genes and nuclear SREBP1a. In contrast, knocking down SCAP decreased the abundance of the nuclear SREBP1a protein and downregulated the abundance of target genes. Lipid droplet staining revealed that knocking down SCAP reduced LD formation and average LD diameter. In contrast, overexpression of SCAP increased the formation and size of the LDs. The results from an analysis of cellular lipids revealed that phospholipids are the predominant species in the profile of cell lipids. phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are important for determining the size of LDs. The LD formation induced by SCAP gene overexpression and knockdown underscored the role of phospholipids involved in lipid droplet formation and fusion.


Assuntos
Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Gotículas Lipídicas/metabolismo , Lipidômica , Glândulas Mamárias Animais/citologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Fosfolipídeos/metabolismo , Animais , Bovinos , Feminino , Regulação Enzimológica da Expressão Gênica/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
15.
J Med Virol ; 92(2): 149-160, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31517388

RESUMO

Classical swine fever virus (CSFV) is a single-stranded RNA flavivirus that can cause serious diseases in porcine species, including symptoms of infarction, systemic hemorrhage, high fever, or depression. Viperin is an important interferon-inducible antiviral gene that has been shown to inhibit CSFV, but the exact mechanisms by which it is able to do so remain poorly characterized. In the present study, we determined that CSFV infection led to viperin upregulation in PK-15 cells (porcine kidney cell). When viperin was overexpressed in these cells, this markedly attenuated CSFV replication, with clear reductions in viral copy number after 12 to 48 hours postinfection. Immunofluorescence microscopy revealed that the viral NS5A protein colocalized with viperin in infected cells, and this was confirmed via confocal laser scanning microscopy using labeled versions of these proteins, and by co-immunoprecipitation which confirmed that NS5A directly interacts with viperin. When NS5A was overexpressed, this inhibited the replication of CSFV, and we determined that the radical SAM domain and N-terminal domain of viperin was critical for its ability to bind to NS5A, with the latter being most important for this interaction. Together, our in vitro results highlight a potential mechanism whereby viperin is able to inhibit CSFV replication. These results have the potential to assist future efforts to prevent or treat systemic CSFV-induced disease, and may also offer more general insights into the antiviral role of viperin in innate immunity.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/imunologia , Proteínas/imunologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Células Cultivadas , Peste Suína Clássica/genética , Vírus da Febre Suína Clássica/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imunoprecipitação , Interferons/fisiologia , Domínios e Motivos de Interação entre Proteínas , Proteínas/genética , Transdução de Sinais , Suínos , Proteínas não Estruturais Virais/genética
16.
Biotechnol Lett ; 42(3): 375-387, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31872317

RESUMO

OBJECTIVES: Hydrogen sulfide (H2S) is involved in regulating cell apoptosis and proliferation. However, The effects and mechanism of H2S on the apoptosis of mammary epithelial cells that suffer from an inflammatory response remain unknown. RESULTS: An inflammatory cell model was used to explore whether exogenous H2S regulates lipopolysaccharides (LPS)-induced cell proliferation and apoptosis. We found that H2S affected cell viability, the inflammatory response and apoptosis in LPS-treated cells in a concentration-dependent manner. Moreover, exogenous H2S rescued LPS-induced cystathionine γ-lyase (CSE) inhibition and cystathionine ß-synthase (CBS) synthesis. Interestingly, in cells undergoing inflammation-induced apoptosis, H2S activated the PI3K/Akt and NFκB signal pathways both tested concentrations. Akt appeared to be a key crosstalk molecule that played a "bridge" role. CONCLUSIONS: H2S regulates LPS-induced inflammation and apoptosis by activating the PI3K/Akt/NFκB signaling pathway. Hence, NaHS may be clinically useful for preventing or treating mastitis.


Assuntos
Apoptose/efeitos dos fármacos , Células Epiteliais/metabolismo , Sulfeto de Hidrogênio/farmacologia , Glândulas Mamárias Animais/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Células Epiteliais/patologia , Feminino , Inflamação/metabolismo , Inflamação/patologia , Glândulas Mamárias Animais/patologia
17.
PLoS One ; 14(8): e0214903, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31390361

RESUMO

This study aimed to evaluate the effects of a high dose of conjugated linoleic acid (CLA) on lactating mice. In one experiment, Kunming mice were separated into four groups (n = 6 per group); the control (CON) group received 3.0% linoleic acid (LA) oil, the L-CLA group received a mixture of 2.0% LA and 1.0% CLA, the M-CLA group received a mixture of 1.0% LA and a 2.0% CLA, and the H-CLA group received 3.0% CLA. Feeding proceeded from day 4 to day 10 of lactation. In a second experiment, a CON group received 3.0% LA, and an H-CLA group received 3.0% CLA. Plasma parameters were analyzed for all groups, and insulin tolerance tests (ITTs) were conducted. CLA treatment did not affect dam weight but significantly decreased the food intake of dams during lactation. Furthermore, CLA decreased the weight of pups on day 10 of lactation; this effect was attributed to lower milk fat of dams in the CLA group than in those of the other groups. Relative to mice in the CON group, the mice in the H-CLA group displayed increased liver weight and liver triglyceride (TG) content as well as higher TG content and γ-glutamyl transferase (γ-GT) activity in the plasma. Moreover, high-dose CLA resulted in insulin resistance, possibly affecting the red blood cell (RBC) and hemoglobin (HCB) levels in the plasma. In conclusion, lactating mice receiving a high dose of CLA exhibited fatty liver, insulin resistance, and impaired lactation performance.


Assuntos
Fígado Gorduroso/prevenção & controle , Resistência à Insulina , Lactação , Ácidos Linoleicos Conjugados/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Ácidos Linoleicos Conjugados/análise , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Leite/efeitos dos fármacos , Leite/metabolismo
18.
Sensors (Basel) ; 18(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544678

RESUMO

Mathematical models and imaging models that show the relationship between the transition points mismatch of analog-to-digital converters (ADCs) and the bit error rate (BER) in single-bit and multi-bit quanta image sensors (QISs) are established. The mathematical models suggest that when the root-mean-square (r.m.s.) of the read noise in jots is 0.15e-, the standard deviation of the transition points should be less than 0.15e- to ensure that the BER is lower than 1% in the single-bit QIS, and 0.21e- to ensure that the BER is lower than 5% in the multi-bit QIS. Based on the mathematical models, the imaging models prove that the fixed-pattern noise (FPN) increases with a stronger transition point mismatch. The imaging models also compare the imaging quality in the case of different spatial oversampling factors and bit depths. The grayscale similarity index (GSI) is 3.31 LSB and 1.74 LSB when the spatial oversampling factors are 256 and 4096, respectively, in the single-bit QIS. The GSI is 1.93 LSB and 1.13 LSB when the bit depth is 3 and 4, respectively, in the multi-bit QIS. It indicates that a higher bit depth and a larger spatial oversampling factor could reduce the effect of the transition points mismatch of1-bit or n-bit ADCs.

19.
Bioorg Med Chem Lett ; 28(14): 2459-2464, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29886021

RESUMO

Curcumin is a well-known pharmacophore and some of its derivatives are shown to target 20S proteasome recently. In this report, we designed and synthesized two series of curcumin derivatives modified with different α-amino boronic acids as potent proteasome inhibitors. The synthesized compounds were evaluated for their cytotoxic activities against HCT116 cells, and the results showed that all of them exhibited excellent cell growth inhibitory activity comparing with curcumin, with the IC50 values varying from 0.17 µM to 1.63 µM. Compound II-2F with free boronic acid was assayed for its proteasome inhibitory activity and the results indicated that II-2F exhibited more potent inhibitory activity against ChT-L with high subunit selectivity than any other reported curcumin derivatives.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Curcumina/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Borônicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Curcumina/síntese química , Curcumina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Estrutura Molecular , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/química , Relação Estrutura-Atividade
20.
Res Vet Sci ; 118: 395-402, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29684816

RESUMO

Subacute ruminal acidosis (SARA) can cause rapid lipopolysaccharide (LPS) elevation and milk yield decline in lactating ruminants. LPS has been shown to promote apoptosis and reduce the proliferation of mammary epithelial cells. Previous studies have shown that γ- amino butyric acid (GABA) can enhance production performance, regulating ß-cell apoptosis and proliferation. Whether GABA can regulate apoptosis and proliferation induced by LPS in mammary epithelial cells is unknown. In this paper, we detected the role of GABA on proliferation and apoptosis as well as inflammation induced by LPS in bovine mammary epithelial cells (MAC-T cell line). In addition, we explored the role mechanism of GABA in LPS-induced MAC-T cells response through detecting the NFκB signaling pathway key molecules. The results suggested that GABA reduced the effects of cell apoptosis induced by LPS. Furthermore, GABA inhibited the expression of inflammatory cytokines activated by LPS. More importantly, blocking GABA receptors with its antagonist, GABA could not reduce the expression of inflammatory and pro-apoptotic factors activated by LPS. Notably, GABA significantly decreased the TLR4, NFκB p65, and MyD88 mRNA expression levels that were elevated by LPS. Our data indicated that GABA can improve cell viability and decrease apoptosis induced by LPS, while exerting an anti-inflammatory effect through the NFκB signaling pathway.


Assuntos
Apoptose , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like , Ácido gama-Aminobutírico/fisiologia , Animais , Bovinos , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Lactação , NF-kappa B , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA