Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133164, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38103292

RESUMO

In response to the stricter EU VII emission standards and the "150 â„ƒ challenge", selective catalytic reduction by ammonia (NH3-SCR) catalysts for motor vehicles are required to achieve high NO conversion below 200 °C. Compounding metal oxides with zeolites is an important strategy to design the low-temperature SCR catalysts. Here, we original prepared Cu-SSZ-13 @ MnGdOx (Cu-Z @ MGO), which achieved over 90% NO conversion and 95% N2 selectivity at 150 â„ƒ. It has been demonstrated that a uniform mesoporous loaded layer of MGO grows on Cu-Z, and a recrystallization zone appears at the MGO-Cu-Z interface. We discover that the excellent low-temperature SCR activity derives from the strong metal oxide-zeolite interaction (SMZI) effects. The SMZI effects cause the anchor and high dispersion of MGO on the surface of Cu-Z. Driven by the SMZI effects, the Mn3+/Mn4+ redox cycle ensures the low and medium temperature-SCR activity and the Cu2+/Cu+ redox cycle guarantees the medium and high temperature-SCR activity. The introduction of MGO improves the reaction activity of -NH2 species adsorbed at Mn sites at 150 â„ƒ, achieving a cycle of reduction and oxidation reactions at low temperatures. This strategy of inducing SMZI effects of metal oxides and zeolites paves a way for development of high-performance catalysts.

2.
Environ Sci Technol ; 57(50): 21470-21482, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38050842

RESUMO

NOx and CH3SH as two typical air pollutants widely coexist in various energy and industrial processes; hence, it is urgent to develop highly efficient catalysts to synergistically eliminate NOx and CH3SH. However, the catalytic system for synergistically eliminating NOx and CH3SH is seldom investigated to date. Meanwhile, the deactivation effects of CH3SH on catalysts and the formation mechanism of toxic byproducts emitted from the synergistic catalytic elimination reaction are still vague. Herein, selective synergistic catalytic elimination (SSCE) of NOx and CH3SH via engineering deep oxidation sites over Cu-modified Nb-Fe composite oxides supported on TiO2 catalyst against toxic CO and HCN byproducts formation has been originally demonstrated. Various spectroscopic and microscopic characterizations demonstrate that the sufficient chemisorbed oxygen species induced by the persistent electron transfer from Nb-Fe composite oxides to copper oxides can deeply oxidize HCOOH to CO2 for avoiding highly toxic byproducts formation. This work is of significance in designing superior catalysts employed in more complex working conditions and sheds light on the progress in the SSCE of NOx and sulfur-containing volatile organic compounds.


Assuntos
Poluentes Atmosféricos , Óxidos , Oxirredução , Óxidos/análise , Óxidos/química , Oxigênio , Transporte de Elétrons , Catálise , Amônia/química
3.
Environ Sci Technol ; 56(16): 11646-11656, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35876848

RESUMO

SO2-resistant selective catalytic reduction (SCR) of NOx remains a grand challenge for eliminating NOx generated from stationary combustion processes. Herein, SO2-resistant NOx reduction has been boosted by modulating electronic interaction of short-range Fe-O coordination over Fe2O3/TiO2 catalysts. We report a remarkable SO2-tolerant Fe2O3/TiO2 catalyst using sulfur-doped TiO2 as the support. Via an array of spectroscopic and microscopic characterizations and DFT theoretical calculations, the active form of the dopant is demonstrated as SO42- residing at subsurface TiO6 locations. Sulfur doping exerts strong electronic perturbation to TiO2, causing a net charge transfer from Fe2O3 to TiO2 via increased short-range Fe-O coordination. This electronic effect simultaneously weakens charge transfer from Fe2O3 to SO2 and enhances that from NO/NH3 to Fe2O3, resulting in a remarkable "killing two birds with one stone" scenario, that is, improving NO/NH3 adsorption that benefits SCR reaction and inhibiting SO2 poisoning that benefits catalyst long-term stability.


Assuntos
Amônia , Titânio , Amônia/química , Catálise , Eletrônica , Oxirredução , Enxofre , Titânio/química
4.
Environ Sci Technol ; 56(14): 10433-10441, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35758155

RESUMO

Catalytic combustion of volatile organic compounds (VOCs) at low temperatures is still an urgent issue to be solved. Herein, low-temperature combustion of toluene over Cu-doped SmMn2O5 mullite catalysts via creating highly active Cu2+-O-Mn4+ sites has been originally demonstrated. Cu-doped SmMn2O5 mullite catalysts exhibited 90% conversion of toluene at 206 °C and displayed robust stability even in the presence of water. It has been demonstrated that Cu doping created Cu2+-O-Mn4+ active composite sites that were more exposed after removing surface Sm species via acid-etching. Benefiting from this, the redox and oxygen activation ability of catalysts was significantly enhanced. The consumption of benzaldehyde and benzoic acid as intermediate species and the CO2 generation ability were apparently promoted, which were the direct reasons for the enhanced low-temperature combustion of toluene. This work provides novel ideas for the development of high-performance catalysts for low-temperature VOC combustion, which has great industrial application prospects.

5.
Environ Sci Technol ; 56(9): 5840-5848, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35446019

RESUMO

Currently, SO2-induced catalyst deactivation from the sulfation of active sites turns to be an intractable issue for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. Herein, SO2-tolerant NOx reduction has been originally demonstrated via tailoring the electron transfer between surface iron sulfate and subsurface ceria. Engineered from the atomic layer deposition followed by the pre-sulfation method, the structure of surface iron sulfate and subsurface ceria was successfully constructed on CeO2/TiO2 catalysts, which delivered improved SO2 resistance for NOx reduction at 250 °C. It was demonstrated that the surface iron sulfate inhibited the sulfation of subsurface Ce species, while the electron transfer from the surface Fe species to the subsurface Ce species was well retained. Such an innovative structure of surface iron sulfate and subsurface ceria notably improved the reactivity of NHx species, thus endowing the catalysts with a high NOx reaction efficiency in the presence of SO2. This work unraveled the specific structure effect of surface iron sulfate and subsurface ceria on SO2-toleant NOx reduction and supplied a new point to design SO2-tolerant catalysts by modulating the unique electron transfer between surface sulfate species and subsurface oxides.


Assuntos
Amônia , Elétrons , Amônia/química , Ferro , Oxirredução , Sulfatos
6.
Environ Sci Technol ; 56(8): 5170-5178, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35369692

RESUMO

Selective catalytic reduction (SCR) of NOx over V2O5-based oxide catalysts has been widely used, but it is still a challenge to efficiently reduce NOx at low temperatures under SO2 and H2O co-existence. Herein, SO2- and H2O-tolerant catalytic reduction of NOx at a low temperature has been originally demonstrated via engineering polymeric VOx species by CeO2. The polymeric VOx species were tactfully engineered on Ce-V2O5 composite active sites via the surface occupation effect of Ce, and the obtained catalysts exhibited remarkable low-temperature activity and strong SO2 and H2O tolerance at 250 °C. The strong interaction between Ce and V species induced the electron transfer from V to Ce and tuned the SCR reaction via the E-R pathway between the NH4+/NH3 species and gaseous NO. In the presence of SO2 and H2O, the polymeric VOx species had not been hardly influenced, while the formation of sulfate species on Ce sites not only promoted the adsorption of NH4+ species and the reaction between gaseous NO and NH4+ but also facilitated the decomposition of ammonium bisulfate through weakening the strong bond between HSO4- and NH4+. This work provided a new strategy for SO2- and H2O-tolerant catalytic reduction of NOx at a low temperature.


Assuntos
Amônia , Óxidos , Amônia/química , Catálise , Oxirredução , Polímeros , Temperatura
7.
Environ Sci Technol ; 56(6): 3719-3728, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35226458

RESUMO

The synergistic catalytic removal of NOx and chlorinated volatile organic compounds under low temperatures is still a big challenge. Generally, degradation of chlorinated organics demands sufficient redox ability, which leads to low N2 selectivity in the selective catalytic reduction of NOx by NH3 (NH3-SCR). Herein, mediating acid sites via introducing the CePO4 component into MnO2/TiO2 NH3-SCR catalysts was found to be an effective approach for promoting chlorobenzene degradation. The observation of in situ diffuse reflectance infrared Fourier transform (in situ DRIFT) and Raman spectra reflected that the Lewis acid sites over CePO4 promoted the nucleophilic substitution process of chlorobenzene over MnO2 by weakening the bond between Cl and benzene ring. Meanwhile, MnO2 provided adequate Brønsted acid sites and redox sites. Under the cooperation of Lewis and Brønsted acid sites, relying on the rational redox ability, chlorobenzene degradation was promoted with synergistically improved NH3-SCR activity and selectivity. This work offers a distinct pathway for promoting the combination of chlorobenzene catalytic oxidation and NH3-SCR, and is expected to provide a novel strategy for synergistic catalytic elimination of NOx and chlorinated volatile organic compounds.


Assuntos
Compostos de Manganês , Compostos Orgânicos Voláteis , Amônia/química , Catálise , Oxirredução , Óxidos
8.
J Environ Sci (China) ; 111: 340-350, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34949363

RESUMO

Developing low-temperature SO2-tolerant catalysts for the selective catalytic reduction of NOx is still a challenging task. The sulfation of active metal oxides and deposition of ammonium bisulfate deactivate catalysts, due to the difficult decomposition of the as-formed sulfate species at low temperatures (<300 °C). In recent years, metal sulfate catalysts have attracted increasing attention owing to their good catalytic activity and strong SO2 tolerance at higher temperatures (>300°C); however, the SO2-tolerant mechanism of metal sulfate catalysts is still ambiguous. In this study, Fe2(SO4)3/TiO2 and Ce2(SO4)3/TiO2 catalysts were prepared using the corresponding metal sulfate salt as the precursor. These catalysts were tested for their low-temperature activity and SO2 tolerance activity. Compared to Ce2(SO4)3/TiO2, Fe2(SO4)3/TiO2 showed significantly better low-temperature activity and SO2 tolerance. It was demonstrated that less surface sulfate species formed on Fe2(SO4)3/TiO2 and Ce2(SO4)3/TiO2. However, the presence of NO and O2 could assist the decomposition of NH4HSO4 over Fe2(SO4)3/TiO2 at a lower temperature, endowing Fe2(SO4)3/TiO2 with better low-temperature SO2 tolerance than Ce2(SO4)3/TiO2. This study unraveled the SO2-tolerant mechanism of Fe2(SO4)3/TiO2 at lower temperatures (<300 °C), and a potential strategy is proposed for improving the low-temperature SO2-tolerance of catalysts with Fe2(SO4)3 as the main active component or functional promoter.


Assuntos
Amônia , Titânio , Catálise , Oxirredução , Óxidos
9.
Environ Sci Technol ; 55(17): 11970-11978, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34488354

RESUMO

Reducing the poisoning effect arising from alkali metals over catalysts for selective catalytic reduction (SCR) of NOx by NH3 is still an urgent issue to be solved. Herein, alkali-resistant NOx reduction over B-doped CeO2/TiO2 catalysts (Ce-B/TiO2) with Ce-O-B alkali-capture sites was originally demonstrated. It was noted that boron was confirmed to be doped into the lattice of CeO2 to form the Ce-O-B structure. In this way, more active Ce(III) species and oxygen vacancies were generated from B-doped CeO2, thus accelerating the redox cycle and enhancing the adsorption/activation of NO. Gratifyingly, the created Ce-O-B sites as alkali-capture sites could be effectively combined with K and release the poisoned Ce active sites, which maintained efficient NH3 and NO adsorption/activation over K poisoned Ce-B/TiO2. This work paves a way for designing highly efficient and alkali-resistant SCR catalysts in both academic and industrial fields.


Assuntos
Álcalis , Amônia , Catálise , Oxirredução , Titânio
10.
Environ Sci Technol ; 54(21): 14066-14075, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33064939

RESUMO

SO2-tolerant selective catalytic reduction (SCR) of NOx at low temperature is still challenging. Traditional metal oxide catalysts are prone to be sulfated and the as-formed sulfates are difficult to decompose. In this study, we discovered that SO2 adsorption could be largely restrained over FeδCe1-δVO4 catalysts, which effectively restrained the deposition of sulfate species and endowed catalysts with strong SO2 tolerance at an extremely low temperature of 240 °C. The increasing oxygen vacancies, enhanced redox properties, and improved acidity contributed to the SCR activity of the FeδCe1-δVO4 catalyst. The reaction pathway changed from the reaction between bidentate nitrate and the NH3 species over CeVO4 catalysts via the Langmuir-Hinshelwood mechanism to that between gaseous NOx and the NH4+/NH3 species over FeδCe1-δVO4 catalysts via the Eley-Rideal mechanism. The effective suppression of SO2 adsorption allowed FeδCe1-δVO4 catalysts to maintain the Eley-Rideal pathways on account of the reduced formation of sulfate species. This work demonstrated an effective route to improve SO2 tolerance via modulating SO2 adsorption on Ce-based vanadate catalysts, which presented a new point for the development of high-performance SO2-tolerant SCR catalysts.


Assuntos
Amônia , Óxidos , Adsorção , Catálise , Oxirredução
11.
Environ Sci Technol ; 54(19): 12752-12760, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32877168

RESUMO

Reducing the poisoning effect of alkali and heavy metals over ammonia selective catalytic reduction (NH3-SCR) catalysts is still an intractable issue, as the presence of K and Pb in fly ash greatly hampers their catalytic activity by impairing the acidity and affecting the redox properties of the catalysts, leading to the reduction in the lifetime of SCR catalysts. To address this issue, we propose a novel self-protected antipoisoning mechanism by designing SO42-/TiO2 superacid supported CeO2-SnO2 catalysts. Owing to the synergistic effect between CeO2 and SnO2 and the strong acidity originating from the SO42-/TiO2 superacid, the catalysts show superior catalytic activity over a wide temperature range (240-510 °C). Moreover, when K or/and Pb are deposited on SO42-/TiO2 catalysts, the bond effect between SO42- and Ti-O would be broken so that the sulfate in the bulk of SO42-/TiO2 superacid support would be induced to migrate to the surface to bond with K and Pb, thus prohibiting poisons from attacking the Ce-Sn active sites, and significantly boosting the resistance. Hopefully, this novel self-protection mechanism derived from the migration of sulfate in the SO42-/TiO2 superacid to resist alkali and heavy metals provides a new avenue for designing novel catalysts with outstanding resistance to alkali and heavy metals.


Assuntos
Álcalis , Metais Pesados , Amônia , Catálise , Oxirredução , Titânio
12.
Environ Sci Technol ; 54(20): 13314-13321, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32960572

RESUMO

Currently, improving the alkali resistance of vanadium-based catalysts still remains as an intractable issue for the selective catalytic reduction of NOx with NH3 (NH3-SCR). It is generally believed that the decrease in adsorbed NHx species deriving from the declined acidic sites is the chief culprit for the deactivation of alkali-poisoned catalysts. Herein, alkali-resistant NOx reduction over SCR catalysts via boosting NH3 adsorption rates was originally demonstrated by in situ constructing the sacrificed sites. It is interesting that the adsorbed NHx species largely decrease while the NH3 adsorption rate is well kept over the V2O5/CeO2 catalyst by in situ constructing the sacrificed sites. The SCR activity could be maintained after alkali poisoning because in situ constructed SO42- groups would prefer to be combined with K+ so that the specific V═O species can endow K-poisoned V2O5/CeO2 with high adsorption rate of NH3 and high reactivity of NHx species. This work provides a new viewpoint that NH3 adsorption rate plays more decisive roles in the performance of alkali-poisoned catalysts than the amount of NH3 adsorption and enlightens an alternative strategy to improve the alkali-resistance of catalysts, which is significant to both the academic and industrial fields.


Assuntos
Álcalis , Amônia , Adsorção , Catálise , Vanádio
13.
Environ Sci Technol ; 54(14): 9132-9141, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32574494

RESUMO

At present, the deactivation of selective catalytic reduction (SCR) catalysts caused by the coexistence of alkali metal and phosphorus (P) remains an urgent problem and lacks corresponding strategies against catalyst poisoning. Herein, a novel zeolite-like Ce-Si5Al2Ox catalyst derived from an ultrasmall nanozeolite EMT precursor was synthesized without organic templates at ambient temperature. This catalyst was able to maintain above 95% NOx conversion in the 270-540 °C temperature range. Moreover, 1 wt % potassium (K) and 5 wt % P loading had no influence on the SCR performance of the Ce-Si5Al2Ox catalyst at 300-480 °C. It was demonstrated that cerium (Ce) was highly dispersed in the amorphous aluminum (Al) silicate derived from EMT zeolites and expressed high catalytic performance. Besides, a large number of acid sites were reserved to absorb ammonia allowing effective participation in the SCR reaction and capturing alkali metals, thus improving the SCR performance and K resistance. Additionally, the strong interaction between Ce and aluminosilicate decreased cerium phosphate production, preventing deactivation of the catalysts. Thus, this novel low-cost zeolite-like Ce-Si5Al2Ox catalyst with a highly active ion-exchanged metal phase and abundant surface acid sites paves a way for designing new efficient and poisoning-resistant SCR catalysts for practical applications.


Assuntos
Zeolitas , Álcalis , Amônia , Catálise , Oxirredução , Fósforo
14.
iScience ; 23(6): 101173, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32480128

RESUMO

It is still challenging to develop strongly alkali-resistant catalysts for selective catalytic reduction of NOx with NH3. It is generally believed that the maintenance of acidity is the most important factor because of neutral effects of alkali. This work discovers that the redox properties rather than acidity play decisive roles in improving alkali resistance of some specific catalyst systems. K-poisoned Fe-decorated SO42--modified CeZr oxide (Fe/SO42-/CeZr) catalysts show decreased acidity but reserve the high redox properties. The higher reactivity of NHx species induced by K poisoning compensates for the decreased amount of adsorbed NHx, leading to a desired reaction efficiency between adsorbed NHx and nitrate species. This study provides a unique perspective in designing an alkali-resistant deNOx catalyst via improving redox properties and activating the reactivities of NHx species rather than routinely increasing acidic sites for NHx adsorption, which is of significance for academic interests and practical applications.

15.
Environ Sci Technol ; 54(12): 7697-7705, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32433872

RESUMO

It is challenging for selective catalytic reduction (SCR) of NOx by NH3 due to the coexistence of heavy metal and SO2 in the flue gas. A thorough probe into deactivation mechanisms is imperative but still lacking. This study unravels unexpected offset effects of Cd and SO2 deactivation over CeO2-WO3/TiO2 catalysts, potential candidates for commercial SCR catalysts. Cd- and SO2-copoisoned catalysts demonstrated higher activity for NOx reduction than a Cd-poisoned catalyst but lower than that for an SO2-poisoned catalyst. In comparison to SO2, Cd had more severe effects on acidic and redox properties, distinctly decreasing the SCR activity. After sulfation of Cd-poisoned catalysts, SO42- preferentially bonded with the surface CdO and released CeO2 active sites poisoned by CdO, thus reserving the highly active CeO2-WO3 sites and maintaining a high activity. The sulfation of Cd-poisoned catalysts also provided more strong acidic sites, and the synergistic effects between the formed cerium sulfate and CeO2 contributed to the high-temperature SCR performance. This work sheds light on the deactivation mechanism of heavy metals and SO2 over CeO2-WO3/TiO2 catalysts and provides an innovative pathway for inventing high-performance SCR catalysts, which have great resistance to heavy metals and SO2 simultaneously. This will be favorable to academic and practical applications in the future.


Assuntos
Amônia , Cádmio , Catálise , Oxirredução , Titânio
16.
Chem Rev ; 119(19): 10916-10976, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31415159

RESUMO

Selective catalytic reduction with NH3 (NH3-SCR) is the most efficient technology to reduce the emission of nitrogen oxides (NOx) from coal-fired industries, diesel engines, etc. Although V2O5-WO3(MoO3)/TiO2 and CHA structured zeolite catalysts have been utilized in commercial applications, the increasing requirements for broad working temperature window, strong SO2/alkali/heavy metal-resistance, and high hydrothermal stability have stimulated the development of new-type NH3-SCR catalysts. This review summarizes the latest SCR reaction mechanisms and emerging poison-resistant mechanisms in the beginning and subsequently gives a comprehensive overview of newly developed SCR catalysts, including metal oxide catalysts ranging from VOx, MnOx, CeO2, and Fe2O3 to CuO based catalysts; acidic compound catalysts containing vanadate, phosphate and sulfate catalysts; ion exchanged zeolite catalysts such as Fe, Cu, Mn, etc. exchanged zeolite catalysts; monolith catalysts including extruded, washcoated, and metal-mesh/foam-based monolith catalysts. The challenges and opportunities for each type of catalysts are proposed while the effective strategies are summarized for enhancing the acidity/redox circle and poison-resistance through modification, creating novel nanostructures, exposing specific crystalline planes, constructing protective/sacrificial sites, etc. Some suggestions are given about future research directions that efforts should be made in. Hopefully, this review can bridge the gap between newly developed catalysts and practical requirements to realize their commercial applications in the near future.

17.
Environ Sci Technol ; 53(11): 6462-6473, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31063367

RESUMO

It is an intractable issue to improve the low-temperature SO2-tolerant selective catalytic reduction (SCR) of NO x with NH3 because deposited sulfates are difficult to decompose below 300 °C. Herein, we established a low-temperature self-prevention mechanism of mesoporous-TiO2@Fe2O3 core-shell composites against sulfate deposition using experiments and density functional theory. The mesoporous TiO2-shell effectively restrained the deposition of FeSO4 and NH4HSO4 because of weak SO2 adsorption and promoted NH4HSO4 decomposition on the mesoporous-TiO2. The electron transfer at the Fe2O3 (core)-TiO2 (shell) interface accelerated the redox cycle, launching the "Fast SCR" reaction, which broadened the low-temperature window. Engineered from the nano- to macro-scale, we achieved one-pot self-installation of mesoporous-TiO2@Fe2O3 composites on the self-tailored AlOOH@Al-mesh monoliths. After the thermal treatment, the mesoporous-TiO2@Fe2O3@Al2O3 monolith catalyst delivered a broad window of 220-420 °C with NO conversion above 90% and had superior SO2 tolerance at 260 °C. The effective heat removal of Al-mesh monolithcatalysts restrained NH3 oxidation to NO and N2O while suppressing the decomposition of NH4NO3 to N2O, and this led to much better high-temperature activity and N2 selectivity. This work supplies a new point for the development of low-temperature SO2-tolerant monolithic SCR catalysts with high N2 selectivity, which is of great significance for both academic interests and practical applications.


Assuntos
Amônia , Metais , Catálise , Oxirredução , Temperatura
18.
Environ Sci Technol ; 53(10): 5946-5956, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31008590

RESUMO

Currently, selective catalytic reduction of NO x with NH3 in the presence of SO2 is still challenging at low temperatures (<300 °C). In this study, enhanced NO x reduction was achieved over a SO2-tolerant Fe-based monolith catalyst, which was originally developed through in situ construction of Al2O3 nanoarrays (na-Al2O3) on the monolithic Al-mesh by a steam oxidation method followed by anchoring Fe2O3 and CeO2 onto the na-Al2O3@Al-mesh composite by an impregnation method. The optimum catalyst delivered more than 90% NO conversion and N2 selectivity above 98% within 250-430 °C as well as excellent SO2 tolerance at 270 °C. The strong interaction between Fe2O3 and CeO2 enabled favorable electron transfers from Fe2O3 to CeO2 while generating more oxygen vacancies and active oxygen species, consequently accelerating the redox cycle. The improved reactivity of NH4+ with nitrates following the Langmuir-Hinshelwood mechanism and active NH2 species that directly reacted with gaseous NO following the Eley-Rideal mechanism enhanced the NO x reduction efficiency at low temperatures. The preferential sulfation of CeO2 alleviated the sulfation of Fe2O3 while maintaining the high reactivities of NH4+ and NH2 species. Especially, the SCR reaction following the Eley-Rideal mechanism largely improved the SO2 tolerance because NO does not need to compete with sulfates to adsorb on the catalyst surface as nitrates or nitrites. This work paves a way for the development of high-performance SO2-tolerant SCR monolith catalysts.


Assuntos
Amônia , Telas Cirúrgicas , Catálise , Óxido Nítrico , Oxirredução
19.
ACS Appl Mater Interfaces ; 11(12): 11507-11517, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30817117

RESUMO

Alkali metals generated during waste incineration in power stations are not conducive to the control of nitrogen oxide (NO x) emission. Hence, improved selective catalytic reduction of NO x with ammonia (NH3-SCR) in the presence of alkali metals is a major issue for practical NO x removal. In this work, we developed a novel TiO2-decorated acid-treated MnO x octahedral molecular sieve (OMS-5(H)@TiO2) catalyst with improved alkali-resistant NO x reduction at low temperature, and the dual promotional effects of OMS-5(H)@TiO2 catalysts were clarified. It was found that the special structure of the acid-treated MnO x octahedral molecular sieve (OMS-5(H)) was responsible for the trapping of alkali metals and high deNO x activity at low temperature. Subsequently, the decoration by TiO2 further improved the redox properties by accelerating the high ratio of Mn4+ and Oα on the surface of the highly active (OMS-5(H)@TiO2) catalyst. Moreover, a thorough mechanism study via in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTs) demonstrated that the acid treatment led to remarkable increment of acid sites, which enabled the catalyst to resist alkali metals in the form of ion exchange. Meanwhile, the decoration of TiO2 further increased the strength of the Lewis acid sites, assisting more active intermediate species to effectively take part in the deNO x reaction. Besides, a "fast SCR" process was observed to certify that the decoration of TiO2 promoted the improvement of low-temperature activity in the presence of alkali metals. The dual effects combining OMS-5(H) with TiO2 decoration in terms of alkali metal resistance and high catalytic activity at low temperature proved that the high-performance deNO x catalyst was successfully developed in this work. The work paves a way for the development of superior low-temperature SCR catalysts with improved NO x reduction efficiency in the presence of alkali metals.

20.
Environ Sci Technol ; 53(2): 938-945, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576117

RESUMO

Currently, selective catalytic reduction (SCR) of NO x with NH3 in the presence of SO2 by using vanadium-free catalysts is still an important issue for the removal of NO x for stationary sources. Developing high-performance catalysts for NO x reduction in the presence of SO2 is a significant challenge. In this work, a series of Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts were synthesized by a molten salt treatment followed by the impregnation method and demonstrated improved NO x reduction in the presence of SO2. The obtained catalyst exhibits superior catalytic activity, high N2 selectivity over a wide temperature range from 270 to 420 °C, and excellent sulfur-poisoning resistance. It has been demonstrated that the Fe2O3-promoted halloysite-supported CeO2-WO3 catalyst increased the ratio of Ce3+ and the amount of surface oxygen vacancies and enhanced the interaction between active components. Moreover, the SCR reaction mechanism of the obtained catalyst was studied using in situ diffuse reflectance infrared Fourier transform spectroscopy. It can be inferred that the number of Brønsted acid sites is significantly increased, and more active species could be produced by Fe2O3 promotion. Furthermore, in the presence of SO2, the Fe2O3-promoted halloysite-supported CeO2-WO3 catalyst can effectively prevent the irreversible bonding of SO2 with the active components, making the catalyst exhibit desirable sulfur resistance. The work paves the way for the development of high-performance SCR catalysts with improved NO x reduction in the presence of SO2.


Assuntos
Cério , Argila , Amônia , Catálise , Vanádio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA