Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(23): 33347-33359, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38676863

RESUMO

Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO2, CH4, and N2O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of Methanophaga, Marinobacter, and Campylobacter during the bioprocess, enhancing the consumption of CH4 and N2O. The metagenomic data showed that the intervention of larvae reduced the ratio of (nirK + nirS + nor)/nosZ in the residues, thereby reducing the emission of N2O. Larvae also increased the functional gene abundance of nirA, nirB, nirD, and nrfA in the residues, making nitrite more inclined to be reduced to ammonia instead of N2O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.


Assuntos
Carbono , Gases de Efeito Estufa , Larva , Microbiota , Nitrogênio , Animais , Carbono/metabolismo , Dípteros , Reatores Biológicos , RNA Ribossômico 16S , Metano/metabolismo
2.
Food Sci Nutr ; 11(10): 6459-6469, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823169

RESUMO

Obesity is characterized by chronic inflammation, insulin resistance, and gut microbiota dysbiosis. Dioscorea opposita Thunb. is a traditional food and medicine homolog from China. In the present study, polysaccharides isolated from a water extract of Dioscorea opposita Thunb. (DOTPs) were prepared. We showed that DOTPs reduced body weight, accumulation of fat tissues, insulin resistance, and inflammation in high-fat diet (HFD)-fed mice. Further experiments showed that DOTPs could regulate the composition of the gut microbiota in HFD mice. DOTPs supplementation in HFD-fed mice resulted in the reduction of the Firmicutes-to-Bacteroidetes ratio. We further demonstrated that DOTPs supplementation enhanced bacterial levels of Akkermansia and reduced levels of Ruminiclostridium_9. A significant reduction of glycolysis metabolism related to obesity and gut microbiota dysbiosis was also observed upon administration of DOTPs. Our results suggest that DOTPs can produce significant anti-obesity effects, by inhibiting systematic inflammation and ameliorating gut microbiota dysbiosis in diet-induced obese mice.

3.
Pharmacol Res ; 159: 104935, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32464328

RESUMO

Xiaokewan is a typical Traditional Chinese medicine (TCM) for diabetes and contains various natural chemicals, such as lignans, flavonoids, saponins, polysaccharides, and western medicine glibenclamide. In the current study, a highly efficient system for screening hypoglycemic efficacy constituents of Xiaokewan has been developed with the integration of intelligent data acquisition, data mining, network pharmacology, and computer assisted target fishing. With the combination of background exclusion data dependent acquisition (BE-DDA) and non-targeted precise-and-thorough background-subtraction (PATBS) techniques, a novel workflow has been established for the non-targeted recognition and identification of TCM constituents in vivo, and has been applied to the exposure study of Xiaokewan in rat. In this case, an interesting correlation among drug, target, and disease can be established, by combining the screening or characterization results with the strategy of network pharmacology and multiple computer assisted techniques. Consequently, five main constituents (puerarin, daidzein, formononetin, deoxyschizandrin and glibenclamide) exposed in vivo have been selected as effective hypoglycemic components. Meanwhile, the network pharmacology experimental results showed that these five constituents could act on various drug targets, such as PI3K, PTP1B, MAPK, AKT, TNF, and NF-κB. These five constituents might be involved in the regulation of ß-cell function or exhibit inflammation inhibition ability to relieve the pathophysiological process of disease from multiple links. Furthermore, the pharmacological effects of these five constituents have been verified by diabetic zebrafish model. The zebrafish model results showed that the TCM monomer mixture without glibenclamide exhibited similar hypoglycemic activity with Xiaokewan. Although the monomer mixture with glibenclamide showed better activity than Xiaokewan only, the deoxyschizandrin (TCM constituent of Xiaokewan) exhibited best hypoglycemic performance. In summary, the above results indicated that the application of both intelligent recognition technology in mass spectrometry dataset and computerized network pharmacology might provide a pioneering approach for investigating the substance basis of TCM and searching lead compounds from natural sources.


Assuntos
Inteligência Artificial , Glicemia/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Hipoglicemiantes/farmacologia , Biologia de Sistemas , Animais , Animais Geneticamente Modificados , Biomarcadores/sangue , Glicemia/metabolismo , Cromatografia Líquida de Alta Pressão , Mineração de Dados , Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Redes Reguladoras de Genes , Masculino , Mapas de Interação de Proteínas , Ratos Wistar , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Fluxo de Trabalho , Peixe-Zebra/embriologia , Peixe-Zebra/genética
4.
Pharmaceutics ; 11(2)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691070

RESUMO

Icariin (ICA) is a major flavonoid that contains the active compound Epimedii Folium. However, ICA's pharmacokinetic characteristics remain unsatisfactory due to its low bioavailability, and hence limited drugability. In order to improve its pharmacokinetics and achieve prolonged blood circulation time, a novel polymeric micelle, made of the self-assembled micelle between poly (ethylene glycol)-poly (L-lactic acid) (PEG-PLLA) and poly (D-lactic acid)-poly(N-isopropylacrylamide) (PDLA-PNIPAM), was designed to encapsulate ICA. Our experimental results showed that this polymeric micelle formulation of ICA exhibited uniform nano-size distribution and high stability within 48 h. The new formulation also allowed sustained ICA release in an in vitro drug release study. Furthermore, in vivo experiments revealed that ICA bioavailability in the PEG-PLLA/PDLA-PNIPAM polymeric micelle formulation was significantly higher compared to ICA alone, or ICA in the traditional Pluronic F127 micelle formulation. Finally, we show that metabolite analysis confirmed that ICA within the PEG-PLLA/PDLA-PNIPAM polymeric micelle formulation provided better drug protection, reduced drug metabolites production, and decreased undesired first-pass effects. Overall, these data show that ICA within PEG-PLLA/PDLA-PNIPAM polymeric micelle formulation exhibit advantages, in terms of improved physicochemical properties, sustained release of ICA in vitro, and improved bioavailability of ICA in vivo, which represent a feasible approach for improving the drugability of pharmaceutical small molecules with low bioavailability or poor stability.

5.
Int J Nanomedicine ; 13: 805-830, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29445276

RESUMO

INTRODUCTION: The development of nanodrug carriers utilizing tumor microenvironment has become a hotspot in reversing multidrug resistance (MDR). MATERIALS AND METHODS: This study synthesized a redox-sensitive copolymer, Pluronic F127-disulfide bond-d-α-tocopheryl polyethylene glycol 1000 succinate (FSST), through the connection of the reduction-sensitive disulfide bond between F127 and d-α-tocopheryl polyethylene glycol 1000 succinate. This polymer could induce the elevation of reactive oxygen species (ROS) levels, ultimately resulting in cytotoxicity. Moreover, the redox-responsive mixed micelles, F127-folate (FA)/FSST/P123 (FFSSTP), based on FSST, Pluronic F127-FA, and Pluronic P123, were prepared to load paclitaxel (PTX). RESULTS: The in vitro release study demonstrated that FFSSTP/PTX accelerated the PTX release through the breakage of disulfide bond in reductive environment. In cellular experiment, FFSSTP/PTX induced significant apoptosis in PTX-resistant MCF-7/PTX cells through inhibiting adenosine triphosphate (ATP)-binding cassette proteins from pumping out PTX by interfering with the mitochondrial function and ATP synthesis. Furthermore, FFSSTP/PTX induced apoptosis through elevating the intracellular levels of ROS. CONCLUSION: FFSSTP could become a potential carrier for the treatment of MDR tumors.


Assuntos
Dissulfetos/química , Resistencia a Medicamentos Antineoplásicos , Ácido Fólico/química , Neoplasias/tratamento farmacológico , Paclitaxel/uso terapêutico , Poloxaleno/química , Poloxâmero/química , Vitamina E/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Células MCF-7 , Micelas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Paclitaxel/química , Paclitaxel/farmacologia , Poloxaleno/síntese química , Poloxâmero/síntese química , Espécies Reativas de Oxigênio/metabolismo , Vitamina E/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA