Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38718732

RESUMO

A comprehensive bioinformatics analysis was conducted to elucidate the innate immune response of Charybdis japonica following exposure to Aeromonas hydrophila. This study integrated metabolomics, 16S rRNA sequencing, and enzymatic activity data to dissect the immune mechanisms activated in response to infection. Infection with A. hydrophila resulted in an increased abundance of beneficial intestinal genera such as Photobacterium spp., Rhodobacter spp., Polaribacter spp., Psychrilyobacter spp., and Mesoflavibacter spp. These probiotics appear to suppress A. hydrophila colonization by competitively dominating the intestinal microbiota. Key metabolic pathways affected included fatty acid biosynthesis, galactose metabolism, and nitrogen metabolism, highlighting their role in the crab's intestinal response. Enzymatic analysis revealed a decrease in activities of hexokinase, phosphofructokinase, and pyruvate kinase, which are essential for energy homeostasis and ATP production necessary for stress responses. Additionally, reductions were observed in the activities of acetyl-CoA carboxylase and fatty acid synthase. Gene expression analysis showed downregulation in Peroxiredoxin 1 (PRDX1), Peroxiredoxin 2 (PRDX2), glutathione-S-transferase (GST), catalase (CAT), and glutathione (GSH), with concurrent increases in malondialdehyde (MDA) levels, indicating severe oxidative stress. This study provides insights into the molecular strategies employed by marine crabs to counteract bacterial invasions in their natural habitat.

2.
Heliyon ; 10(9): e30012, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707419

RESUMO

Background: In this clinical trial, we evaluated the effects of transcutaneous electroacupoint stimulation (TEAS) on postoperative fatigue (POF) in Parkinson disease (PD) patients undergoing deep brain stimulation (DBS) surgery. Methods: A total 60 PD patients undergoing DBS surgery were enrolled. They were randomized to receive either electrical stimulation [alternative frequency 2/10 Hz, dense and disperse, intensity adjusted to the maximum tolerated by the participants (6-15 mAmp)] via surface electrodes (TEAS group) or surface electrodes only without electrical stimulation (Con group) at bilateral Zusanli and Sanyinjiao acupuncture points. All participants received their assigned intervention (TEAS or Con) during the 1st stage of surgery [(except during microelectrode recording (MER)] and the entire 2nd stage of surgery. Intraoperative anesthetic requirements were adjusted based on bispectral index (BIS) monitor. POF was assessed by Christensen fatigue scales (ChrFS), along with Quality of Recovery-15 (QoR-15) and mini-mental state examination (MMSE) postoperatively over a 7-day-period. We recorded the usage of rescue analgesics and anti-emetics. Results: Fifty-nine patients' datasets were included for final analyses. Fewer patients in TEAS experienced severe POF (defined as ChrFS ≥6) at T3 than those in the Con group (TEAS vs. Con: 7 vs. 22, p < 0.001). During the 1st stage of surgery, more patients in Con group required dexmedetomidine infusion (TEAS vs. Con: 2 vs. 6; P < 0.01). Total dosages of propofol and remifanil during the 2nd stage of surgery were TEAS vs. Con: 374.7 ± 61.2 vs 421.5 ± 81.9; p < 0.001 and 572.3 ± 82.0 vs. 662 ± 148.2; P < 0.001, respectively. Postoperative rescue analgesics (TEAS vs. Con: 2 vs. 6; P < 0.001) were used less in the TEAS group. TEAS patients reported better POF, MMSE and QoR15 scores than those in the Con group during most of the assessment period. Conclusions: Intraoperative TEAS decreased the severity of POF, reduced intraoperative anesthetic requirements and facilitated post-DBS recovery in this group of PD patients.

3.
Sci Total Environ ; 931: 172962, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705306

RESUMO

Perfluorooctane sulfonate (PFOS) is a typical persistent organic pollutant that is characterized by environmental persistence, bioaccumulation, and toxicity. In this study, we investigated the gut microbial response of the red claw crayfish Cherax quadricarinatus after 28 days of exposure to 0 ng/L, 1 ng/L, 10 µg/L, or 10 mg/L of PFOS as a stressor. We measured oxidative stress-related enzyme activities and expression of molecules related to detoxification mechanisms to evaluate the toxic effects of PFOS. We found that PFOS disturbed microbial homeostasis in the gut of C. quadricarinatus, resulting in increased abundance of the pathogen Shewanella and decreased abundance of the beneficial bacterium Lactobacillus. The latter especially disturbed amino acid transport and carbohydrate transport. We also found that the activities of glutathione S-transferase and glutathione peroxidase were positively correlated with the expression levels of cytochrome P450 genes (GST1-1, GSTP, GSTK1, HPGDS, UGT5), which are products of PFOS-induced oxidative stress and play an antioxidant role in the body. The results of this study provided valuable ecotoxicological data to better understand the biological fate and effects of PFOS in C. quadricarinatus.


Assuntos
Ácidos Alcanossulfônicos , Antioxidantes , Astacoidea , Fluorocarbonos , Microbioma Gastrointestinal , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Astacoidea/efeitos dos fármacos , Astacoidea/fisiologia , Astacoidea/microbiologia , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Glutationa Transferase/metabolismo
4.
Mol Neurobiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573415

RESUMO

This study investigates the effectiveness of repetitive transcranial magnetic stimulation (rTMS) as a nonpharmacological approach to treating neuropathic pain (NP), a major challenge in clinical research. Conducted on male Sprague-Dawley rats with NP induced through chronic constriction injury of the sciatic nerve, the research assessed pain behaviors and the impact of rTMS on molecular interactions within the amygdala. Through a comprehensive analysis involving Mechanical Withdrawal Threshold (MWT), Thermal Withdrawal Latency (TWL), RNA transcriptome sequencing, RT-qPCR, Western blotting, immunofluorescence staining, and Co-Immunoprecipitation (Co-IP), the study focused on the expression and interaction of integrin αvß3 and its receptor P2X7R. Findings reveal that rTMS significantly influences the expression of integrin αvß3 in NP models, suggesting an inhibition of the NP-associated NLRP3 inflammatory pathway through the disruption of integrin αvß3-P2X7R interactions. These outcomes highlight the potential of rTMS in alleviating NP by targeting molecular interactions within the amygdala, offering a promising therapeutic avenue for managing NP.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513990

RESUMO

Bone cancer pain (BCP) is refractory to currently used analgesics. Recently, sirtuin 2 (SIRT2) was reported to play a vital role in neuropathic pain but its role in BCP remains unknown. It was hypothesized that spinal SIRT2 attenuates BCP by deacetylating FoxO3a and suppressing oxidative stress. The mouse model of BCP established by injecting tumor cells into the intramedullary space of the femur demonstrated that spinal SIRT2 and FoxO3a were downregulated in BCP development. Intrathecal administration of LV-SIRT2 reduced pain hypersensitivity (mechanical and thermal nociception) in BCP mice. Spinal SIRT2 overexpression upregulated FoxO3a and antioxidant genes (SOD2 and catalase) and inhibited FoxO3a acetylation, phosphorylation, and ubiquitination. Moreover, intrathecal administration of SIRT2 shRNA induced pain hypersensitivity in normal mice. Spinal SIRT2 knockdown downregulated FoxO3a and antioxidant genes and increased FoxO3a acetylation, phosphorylation, and ubiquitination. In summary, spinal SIRT2 increases FoxO3a expression in BCP mice and inhibits oxidative stress by deacetylating FoxO3a and further reducing FoxO3a phosphorylation, ubiquitination, and degradation, leading to BCP relief.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Neuralgia , Animais , Camundongos , Antioxidantes , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Dor do Câncer/genética , Dor do Câncer/metabolismo , Sirtuína 2/genética
6.
Fish Shellfish Immunol ; 147: 109461, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382689

RESUMO

This study investigated the effects of nanoplastics (NPs) of varying particle sizes (75, 500, and 1000 nm) and concentrations (2.5 and 10 mg/L) on the gut health of Chiromantes dehaani. The experimental groups included a control (Cg0), and varying combinations of particle size and concentration. Our results showed that 75 nm NPs were more likely to enhance pathogenic bacterial growth than other sized NPs. Compared with CK, Low NPs concentrations (2.5 mg/L) raised total cholesterol (T-CHO) levels in the gut, while high concentrations significantly decreased both triglyceride (TG) and T-CHO levels (p < 0.05). The enzymatic activities of intestinal lipase and amylase were inhibited by NPs exposure, with greater inhibition at higher NPs concentrations. The 500 nm NPs exhibited a notably higher inhibitory effect than the 75 and 1000 nm NPs (P < 0.05). In terms of apoptosis, NPs exposure led to reduced mRNA expression of Bcl2 and increased expression of Caspase-3, Caspase-8, and Caspase-9, indicating an induction of apoptosis. This effect was more pronounced at higher NPs concentrations, with 75 nm NPs more likely to induce apoptosis in intestinal cells than 500 nm and 1000 nm NPs. Moreover, NPs triggered intestinal inflammatory responses, evidenced by the increased mRNA expression of TNF-ß, TNF-α, IL1ß, IL6, and IL8, and the decreased expression of IL10. High NPs concentrations were more likely to induce intestinal inflammation, with 500 nm NPs imparting the strongest effect. In summary, the study demonstrated that NPs, and particularly those at higher concentrations, disrupted the gut environment of C. dehaani by altering the microflora, reducing microbial diversity, inhibiting digestion and metabolism, inducing apoptosis, and triggering inflammation. Among the sizes of NPs tested, 500 nm NPs had the most significant adverse impact on digestion, metabolism, and inflammation, while 75 nm NPs most strongly induced apoptosis in C. dehaani's intestinal cells.


Assuntos
Braquiúros , Nanopartículas , Poluentes Químicos da Água , Animais , Tamanho da Partícula , Microplásticos , Braquiúros/metabolismo , Inflamação , RNA Mensageiro/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Sci Total Environ ; 919: 170924, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360329

RESUMO

Nanoplastics (NPs) are widely distributed environmental pollutants that can disrupt intestinal immunity of crustaceans. In this study, the effects of NPs on gut immune enzyme activities, cell morphology, apoptosis, and microbiota diversity of Litopenaeus vannamei were investigated. L. vannamei was exposed to five concentrations of NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. The results showed that higher concentrations of NPs damaged the intestinal villi, promoted formation of autophagosomes, increased intestinal non-specific immunoenzyme activities, and significantly increased apoptosis at 10 mg/L. In response to exposure to NPs, the expression levels of ATG3, ATG4, ATG12, Caspase-3, p53, and TNF initially increased and then decreased. In addition, the concentration of NPs was negatively correlated to the expression levels of the genes of interest and intestinal enzyme activities, suggesting that exposure to NPs inhibited apoptosis and immune function. The five dominant phyla of the gut microbiota (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinomycetes) were similar among groups exposed to different concentrations of NPs, but the abundances tended to differ. Notably, exposure to NPs increased the abundance of pathogenic bacteria. These results confirm that exposure to NPs negatively impacted intestinal immune function of L. vannamei. These findings provide useful references for efficient breeding of L. vannamei.


Assuntos
Microbioma Gastrointestinal , Microbiota , Penaeidae , Animais , Microplásticos , Poliestirenos , Disbiose , Penaeidae/microbiologia , Autofagia , Apoptose
8.
Environ Sci Pollut Res Int ; 31(5): 8210-8222, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175512

RESUMO

The detection and prediction of pathogenic microorganisms play a crucial role in the sustainable development of the aquaculture industry. Currently, researchers mainly focus on the prediction of water quality parameters such as dissolved oxygen for early warning. To provide early warning directly from the pathogenic source, this study proposes an innovative approach for the detection and prediction of pathogenic microorganisms based on yellow croaker aquaculture. Specifically, a method based on quantitative polymerase chain reaction (qPCR) is designed to detect the Cryptocaryon irritans (Cri) pathogenic microorganisms. Furthermore, we design a predictive combination model for small samples and high noise data to achieve early warning. After performing wavelet analysis to denoise the data, two data augmentation strategies are used to expand the dataset and then combined with the BP neural network (BPNN) to build the fusion prediction model. To ensure the stability of the detection method, we conduct repeatability and sensitivity tests on the designed qPCR detection technique. To verify the validity of the model, we compare the combined BPNN to long short-term memory (LSTM). The experimental results show that the qPCR method provides accurate quantitative measurement of Cri pathogenic microorganisms, and the combined model achieves a good level. The prediction model demonstrates higher accuracy in predicting Cri pathogenic microorganisms compared to the LSTM method, with evaluation indicators including mean absolute error (MAE), recall rate, and accuracy rate. Especially, the accuracy of early warning is increased by 54.02%.


Assuntos
Redes Neurais de Computação , Perciformes , Animais , Qualidade da Água , Aquicultura , China
10.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 270-279, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38282474

RESUMO

Previous studies have shown that puerarin plays a key role in protecting humans and animals from cardiovascular diseases. The exact mechanism of the therapeutic effect of puerarin on various cardiovascular diseases (protective effect on cardiomyocytes) is still unclear. In the present study, we identify the role of puerarin in an animal model of experimental heart failure (HF) and explore its underlying mechanisms. The HF rat model is induced by intraperitoneal injection of adriamycin (ADR), and puerarin is administered intragastrically at low, medium, and high concentrations. We demonstrate that puerarin significantly improves myocardial fibrosis and inflammatory infiltration and, as a result, improves cardiac function in ADR-induced HF rats. Mechanistically, we find for the first time that puerarin inhibits overactivated Na +/H + exchange isoform 1 (NHE1) in HF, which may improve HF by decreasing Na + and Ca 2+ ion concentrations and attenuating mitochondrial damage caused by calcium overload; on the other hand, puerarin inhibits the activation of the p38 pathway in HF, reduces the expressions of TGF-ß and proinflammatory cytokines, and suppresses myocardial fibrosis. In conclusion, our results suggest that Puerarin is an effective drug against HF and may play a protective role in the myocardium by inhibiting the activation of p38 and its downstream NHE1.


Assuntos
Cardiomiopatias , Doenças Cardiovasculares , Insuficiência Cardíaca , Isoflavonas , Humanos , Ratos , Animais , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Miocárdio/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Cardiomiopatias/metabolismo , Fibrose
11.
Fish Shellfish Immunol ; 144: 109236, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992913

RESUMO

Trionyx sinensis Hemorrhagic Syndrome Virus (TSHSV), the first aquatic arterivirus identified in China, causes severe mortality to T. sinensis. In this study, we sought to determine the functions of T. sinensis mRNAs and non-coding RNAs (ncRNAs) that were differentially expressed (DE) over different periods of TSHSV infection of T. sinensis lung. We used RT-qPCR to validate the sequencing results of select RNAs, confirming their reliable and referable nature. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to predict multiple biological functions and signaling pathways in various comparison groups (1-day versus mock, 3-day versus 1-day, and 5-day versus 3-day). Multiple types of differentially expressed RNA, including mRNA, lncRNA, circRNA, and miRNA, were associated with cardiac dysfunction, coagulation abnormalities, and arachidonic acid metabolism at day 1. Pre-inflammatory cytokines and inflammatory factors such as PLA2G4A, cPLA2, γ-GGT1, TNFRSF14, TCP11L2, PTER CYP2J2 and LTC4S, were noticeably regulated at the same time. On day 3, multiple GO terms and KEGG pathways were implicated, including those related to virus defense, apoptosis, pyroptosis, and inflammatory response. Notably, key genes such as RSAD2, TRIM39, STAT4, CASP1, CASP14, MYD88, CXCL3, CARD11, ZBP1, and ROBO4 exhibited significant regulation. The lncRNAs and circRNAs that targeted the genes involved in viral recognition (TLR5), apoptosis (CARD11), pyroptosis (ZBP1), inflammatory processes (NEK7, RASGRP4, and SELE) and angiogenesis (ROBO4) exhibited significant regulation. Significantly regulated miRNAs were primarily linked to genes involved in apoptosis (Let-7f-3p, miR-1260a, miR-455-3p), and inflammation (miR-146a, miR-125a, miR-17a, miR-301b, and miR-30a-3p). The findings could advance our understanding of the host immunological response to TSHSV and offer new ideas for developing effective strategies to prevent infection of T. sinensis.


Assuntos
MicroRNAs , RNA Longo não Codificante , Tartarugas , Animais , Transcriptoma , Tartarugas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , RNA Longo não Codificante/genética , RNA Circular , Pulmão/metabolismo
12.
Small ; 20(3): e2304901, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37695085

RESUMO

Aqueous rechargeable Zn metal batteries (ARZBs) are extensively studied recently because of their low-cost, high-safety, long lifespan, and other unique merits. However, the terrible ion conductivity and insufficient interfacial redox dynamics at low temperatures restrict their extended applications under harsh environments such as polar inspections, deep sea exploration, and daily use in cold regions. Electrolyte modulation is considered to be an effective way to achieve low-temperature operation for ARZBs. In this review, first, the fundamentals of the liquid-solid transition of water at low temperatures are revealed, and an in-depth understanding of the critical factors for inferior performance at low temperatures is given. Furthermore, the electrolyte modulation strategies are categorized into anion/concentration regulation, organic co-solvent/additive introduction, anti-freezing hydrogels construction, and eutectic mixture design strategies, and emphasize the recent progress of these strategies in low-temperature Zn batteries. Finally, promising design principles for better electrolytes are recommended and future research directions about high-performance ARZBs at low temperatures are provided.

13.
Folia Microbiol (Praha) ; 69(1): 1-15, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37644256

RESUMO

Bifidobacteria as a strictly anaerobic gram-positive bacteria, is widely distributed in the intestine, vagina and oral cavity, and is one of the first gut flora to colonize the early stages of life. Intestinal flora is closely related to health, and dysbiosis of intestinal flora, especially Bifidobacteria, has been found in a variety of diseases. Numerous studies have shown that in addition to maintaining intestinal homeostasis, Bifidobacteria may be involved in diseases covering all parts of the body, including the nervous system, respiratory system, genitourinary system and so on. This review collects evidence for the variation of Bifidobacteria in typical diseases among various systems, provides mild and effective therapeutic options for those diseases that are difficult to cure, and moves Bifidobacteria from basic research to further clinical applications.


Assuntos
Bifidobacterium , Intestinos , Feminino , Humanos , Intestinos/microbiologia , Vagina/microbiologia , Dedos do Pé
14.
Virus Res ; 339: 199279, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37992971

RESUMO

Aeromonas hydrophila is an opportunistic pathogen that frequently leads to significant mortality in various commercially cultured aquatic species. Bacteriophages offer an alternative strategy for pathogens elimination. In this study, we isolated, identified, and characterized a novel temperate A. hydrophila phage, designated as P05B. The bacteriophage P05B is a myovirus based on its morphological features, and possesses the capability to lyse A. hydrophila strains isolated from shrimp. The optimal multiplicity of infection (MOI), adsorption rate, latent period, and burst size for phage P05B were determined to be 0.001, 91.7 %, 20 min, and 483 PFU/cell, respectively. Phage P05B displayed stability across a range of temperatures (28-50 °C) and pH values (4.0-10.0). Sequence analysis unveiled that the genome of phage P05B comprises 32,302 base pairs with an average G + C content of 59.4 %. A total of 40 open reading frames (ORF) were encoded within the phage P05B genome. The comparative genomic analyses clearly implied that P05B might represent a novel species of the genus Bielevirus under Peduoviridae family. A phylogenetic tree was reconstructed, demonstrating that P05B shares a close evolutionary relationship with other Aeromonas and Aeromonas phages. In conclusion, this study increased our knowledge about a new temperate phage of A. hydrophila with strong lytic ability.


Assuntos
Bacteriófagos , Palaemonidae , Animais , Aeromonas hydrophila , Palaemonidae/genética , Larva , Filogenia , Lagoas , Genoma Viral
15.
Lancet Reg Health West Pac ; 42: 100955, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38075587

RESUMO

Background: The biological aging process can be modified through lifestyle interventions to prevent age-related diseases and extend healthspan. However, evidence from population-based studies on whether tea consumption could delay the biological aging process in humans remains limited. Methods: This study included 7931 participants aged 30-79 years from the China Multi-Ethnic Cohort (CMEC) Study and 5998 participants aged 37-73 years from the UK Biobank (UKB) who participated in both the baseline and first follow-up surveys. Tea consumption information was collected through questionnaires. Biological age (BA) acceleration was calculated using clinical biomarkers and anthropometric measurements based on the Klemera Doubal method (KDM). Change-to-change analyses were performed to estimate the associations between changes in tea consumption status and changes in BA acceleration using multiple linear models. Follow-up adjusted for baseline analyses were further conducted to examine the prospective exposure-response relationship between tea consumption and BA acceleration among individuals with constant tea consumption status. Findings: During a median follow-up of 1.98 (1.78, 2.16) years in the CMEC and 4.50 (3.92, 5.00) years in the UKB, tea consumption was consistently associated with attenuated BA acceleration in both cohorts. Transitioning from nondrinking to tea-drinking was associated with decreased BA acceleration (CMEC: ß = -0.319, 95% CI: -0.620 to -0.017 years; UKB: ß = -0.267, 95% CI: -0.831 to 0.297 years) compared to consistent nondrinking. Even stronger associations were found in consistent tea drinkers. The exposure-response relationship suggested that consuming around 3 cups of tea or 6-8 g of tea leaves per day may offer the most evident anti-aging benefits. Interpretation: Tea consumption was associated with attenuated BA acceleration measured by KDM, especially for consistent tea drinkers with moderate consumption. Our findings highlight the potential role of tea in developing nutrition-oriented anti-aging interventions and guiding healthy aging policies. Funding: National Natural Science Foundation of China (Grant No. 82273740).

16.
Sci Total Environ ; 913: 169525, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38141979

RESUMO

Plastic pollution pervades both marine and terrestrial ecosystems, fragmenting over time into microplastics (MPs) and nano-plastics (NPs). These particles infiltrate organisms via ingestion, inhalation, and dermal absorption, predominantly through the trophic interactions. This review elucidated the impacts of MPs/NPs on the reproductive viability of various species. MPs/NPs lead to reduced reproduction rates, abnormal larval development and increased mortality in aquatic invertebrates. Microplastics cause hormone secretion disorders and gonadal tissue damage in fish. In addition, the fertilization rate of eggs is reduced, and the larval deformity rate and mortality rate are increased. Male mammals exposed to MPs/NPs exhibit testicular anomalies, compromised sperm health, endocrine disturbances, oxidative stress, inflammation, and granulocyte apoptosis. In female mammals, including humans, exposure culminates in ovarian and uterine deformities, endocrine imbalances, oxidative stress, inflammation, granulosa cell apoptosis, and tissue fibrogenesis. Rodent offspring exposed to MPs experience increased mortality rates, while survivors display metabolic perturbations, reproductive anomalies, and weakened immunity. These challenges are intrinsically linked to the transgenerational conveyance of MPs. The ubiquity of MPs/NPs threatens biodiversity and, crucially, jeopardizes human reproductive health. The current findings underscore the exigency for comprehensive research and proactive interventions to ameliorate the implications of these pollutants.


Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Humanos , Feminino , Masculino , Microplásticos , Plásticos , Sêmen , Inflamação , Mamíferos , Poluentes Químicos da Água/toxicidade
17.
Anesthesiology ; 140(4): 765-785, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38118180

RESUMO

BACKGROUND: The role of nerve growth factor (NGF)/tyrosine kinase A receptor (TrKA) signaling, which is activated in a variety of pain states, in regulating membrane-associated δ-opioid receptor (mDOR) expression is poorly understood. The hypothesis was that elevated NGF in bone cancer tumors could upregulate mDOR expression in spinal cord neurons and that mDOR agonism might alleviate bone cancer pain. METHODS: Bone cancer pain (BCP) was induced by inoculating Lewis lung carcinoma cells into the femoral marrow cavity of adult C57BL/6J mice of both sexes. Nociceptive behaviors were evaluated by the von Frey and Hargreaves tests. Protein expression in the spinal dorsal horn of animals was measured by biochemical analyses, and excitatory synaptic transmission was recorded in miniature excitatory synaptic currents. RESULTS: The authors found that mDOR expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.18 ± 0.01 g vs. mean ± SD: 0.13 ± 0.01 g, n = 4, P < 0.001) and that administration of the DOR agonist deltorphin 2 (Del2) increased nociceptive thresholds (Del2 vs. vehicle, median [25th, 75th percentiles]: 1.00 [0.60, 1.40] g vs. median [25th, 75th percentiles]: 0.40 [0.16, 0.45] g, n = 10, P = 0.001) and reduced miniature excitatory synaptic current frequency in lamina II outer neurons (Del2 vs. baseline, mean ± SD: 2.21 ± 0.81 Hz vs. mean ± SD: 2.43 ± 0.90 Hz, n = 12, P < 0.001). Additionally, NGF expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.36 ± 0.03 vs. mean ± SD: 0.16 ± 0.02, n = 4, P < 0.001), and elevated NGF was associated with enhanced mDOR expression via TrKA signaling. CONCLUSIONS: Activation of mDOR produces analgesia that is dependent on the upregulation of the NGF/TrKA pathway by increasing mDOR levels under conditions of BCP in mice.


Assuntos
Analgesia , Neoplasias Ósseas , Dor do Câncer , Ratos , Masculino , Feminino , Camundongos , Animais , Dor do Câncer/tratamento farmacológico , Receptores Proteína Tirosina Quinases , Ratos Sprague-Dawley , Fator de Crescimento Neural/metabolismo , Camundongos Endogâmicos C57BL , Dor , Neoplasias Ósseas/complicações , Corno Dorsal da Medula Espinal , Receptores Opioides
18.
Environ Int ; 183: 108380, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141489

RESUMO

Gastrointestinal diseases exert a profound impact on global health, leading to millions of healthcare interventions and a significant number of fatalities annually. This, coupled with escalating healthcare expenditures, underscores the need for identifying and addressing potential exacerbating factors. One emerging concern is the pervasive presence of microplastics and nano-plastics in the environment, largely attributed to the indiscriminate usage of disposable plastic items. These nano-plastics, having infiltrated our food chain, pose a potential threat to gastrointestinal health. To understand this better, we co-cultured human gastric fibroblasts (HGF) with polystyrene nano-plastics (PS-NPs) of diverse sizes (80, 500, 650 nm) and meticulously investigated their cellular responses over a 24-hour period. Our findings revealed PS particles were ingested by the cells, with a notable increase in ingestion as the particle size decreased. The cellular death induced by these PS particles, encompassing both apoptosis and necrosis, showcased a clear dependence on both the particle size and its concentration. Notably, the larger PS particles manifested more potent cytotoxic effects. Further analysis indicated a concerning reduction in cellular membrane potential, alongside a marked increase in ROS levels upon PS particles exposure. This suggests a significant disruption of mitochondrial function and heightened oxidative stress. The larger PS particles were especially detrimental in causing mitochondrial dysfunction. In-depth exploration into the PS particles impact on genes linked with the permeability transition pore (PTP) elucidated that these PS particles instigated an internal calcium rush. This surge led to a compromise in the mitochondrial membrane potential, which in tandem with raised ROS levels, further catalyzed DNA damage and initiated cell death pathways. In essence, this study unveils the intricate mechanisms underpinning cell death caused by PS particles in gastric epithelial cells and highlighting the implications of PS particles on gastrointestinal health. The revelations from this research bear significant potential to shape future healthcare strategies and inform pertinent environmental policies.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Poliestirenos/análise , Plásticos/análise , Microplásticos , Espécies Reativas de Oxigênio , Tamanho da Partícula , Poluentes Químicos da Água/análise
19.
Small ; : e2310293, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072631

RESUMO

The static aqueous rechargeable Zn-Iodine batteries (ARZiBs) have been studied extensively because of their low-cost, high-safety, moderate voltage output, and other unique merits. Nonetheless, the poor electrical conductivity and thermodynamic instability of the iodine cathode, the complicated conversion mechanism, and the severe interfacial reactions at the Zn anode side induce their low operability and unsatisfactory cycling stability. This review first clarifies the typical configuration of ARZiBs with a focus on the energy storage mechanism and uncovers the issues of the ARZiBs from a fundamental point of view. After that, it categorizes the recent optimization strategies into cathode fabrication, electrolyte modulation, and separator/anode modification; and summarizes and highlights the achieved progress of these strategies in advanced ARZiBs. Given that the ARZiBs are still at an early stage, the future research outlook is provided, which hopefully may guide the rational design of advanced ARZiBs.

20.
BMC Anesthesiol ; 23(1): 419, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114904

RESUMO

BACKGROUND: Moyamoya disease (MMD) is a cerebrovascular disease with unknown cause. Patients with MMD disease usually experience transient neurological events (TNEs) after revascularization surgery. This retrospective single-center study was aimed to explore the risk factors of postoperative TNEs after surgical revascularization in patients with MMD. METHODS: We selected 324 patients who underwent surgical revascularization between January 2017 and September 2022 in our center. The perioperative characteristics of the patients were recorded and the outcome was TNEs after surgery. An analysis of risk factors contributing to postoperative TNEs by using logistic regression model. RESULTS: Three hundred twelve patients were enrolled, and the incidence of postoperative TNEs was 34% in our study. Males were more likely to suffer from postoperative TNEs (OR = 2.344, p = 0.002). Preoperative ischemic presentation (OR = 1.849, p = 0.048) and intraoperative hypotension (OR = 2.332, p = 0.002) were associated with postoperative TNEs. Compared to patients with blood type O, patients with blood type A (OR = 2.325, p = 0.028), B (OR = 2.239, p = 0.027) and AB (OR = 2.938, p = 0.019) had a significantly higher incidence of postoperative TNEs. A risk prediction model for postoperative TNEs was established, and the established risk prediction area under the receiver operating characteristic curve (ROC) of the model was 0.741. CONCLUSIONS: Males, preoperative ischemic presentation and intraoperative hypotension were associated with postoperative TNEs. We also found a possible link between postoperative TNEs and ABO blood types after surgical revascularization for moyamoya patients.


Assuntos
Revascularização Cerebral , Hipotensão , Doença de Moyamoya , Masculino , Humanos , Estudos Retrospectivos , Doença de Moyamoya/cirurgia , Doença de Moyamoya/complicações , Revascularização Cerebral/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Hipotensão/etiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA