Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 79(1): 61-65, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37965874

RESUMO

OBJECTIVES: To investigate the genetic context and transferability of the oxazolidinone resistance gene optrA in a Streptococcus parasuis isolate. METHODS: The optrA-carrying S. parasuis isolate SFJ45 was characterized by PCR, antimicrobial susceptibility testing, complete genome sequencing and bioinformatic analysis. The transferability of optrA was verified by conjugation, followed by SmaI-PFGE and Southern blotting. RESULTS: The S. parasuis isolate SFJ45 was positive for optrA, mef(A), msr(D), erm(B), tetAB(P)', tet(M), aadE, aphA3, catQ, dfrG and mdt(A), conferring an MDR phenotype. The optrA gene was flanked by ISS1N at both termini in the same orientation, representing a novel 8750 bp pseudo-compound transposon, organized as the ISS1N-hth-clb-4hp-optrA-2hp-ISS1N structure. The ISS1N-optrA-carrying transposon was further inserted within an integrative and conjugative element, ICESpsuSFJ45, at 3' end of the fda gene. Conjugative transfer of the ISS1N-optrA-carrying transposon with ICESpsuSFJ45 was observed from S. parasuis to Streptococcus suis at a frequency of (1.01 ± 3.12) × 10-7. CONCLUSIONS: ISS1N was found to be associated with optrA spreading for the first time. Integration of the ISS1N-optrA transposon within ICESpsuSFJ45 may lead to the co-selection of optrA with other antimicrobial resistance genes, contributing to its horizontal transfer from S. parasuis to clinically more important bacterial pathogens.


Assuntos
Anti-Infecciosos , Streptococcus suis , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
2.
ISME J ; 17(9): 1467-1481, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37369704

RESUMO

Prophages play important roles in the transduction of various functional traits, including virulence factors, but remain debatable in harboring and transmitting antimicrobial resistance genes (ARGs). Herein we characterize a prevalent family of prophages in Streptococcus, designated SMphages, which harbor twenty-five ARGs that collectively confer resistance to ten antimicrobial classes, including vanG-type vancomycin resistance locus and oxazolidinone resistance gene optrA. SMphages integrate into four chromosome attachment sites by utilizing three types of integration modules and undergo excision in response to phage induction. Moreover, we characterize four subtypes of Alp-related surface proteins within SMphages, the lethal effects of which are extensively validated in cell and animal models. SMphages transfer via high-frequency conjugation that is facilitated by integrative and conjugative elements from either donors or recipients. Our findings explain the widespread of SMphages and the rapid dissemination of ARGs observed in members of the Streptococcus genus.


Assuntos
Anti-Infecciosos , Prófagos , Animais , Prófagos/genética , Virulência/genética , Streptococcus/genética , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Transferência Genética Horizontal , Plasmídeos , Conjugação Genética
3.
Vet Microbiol ; 283: 109795, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269713

RESUMO

Streptococcus parasuis is a potential opportunistic zoonotic pathogen which is a close relative to Streptococcus suis, which exhibit extensive genetic exchange. The occurrence and dissemination of oxazolidinone resistance poses a severe threat to public health. However, such knowledge about the optrA gene in S. parasuis is limited. Herein, we characterized an optrA-positive multi-resistant S. parasuis isolate AH0906, in which the capsular polysaccharide locus exhibited a hybrid structure of S. suis serotype 11 and S. parasuis serotype 26. The optrA and erm(B) genes were co-located on a novel ICE of the ICESsuYZDH1 family, designated ICESpsuAH0906. IS1216E-optrA-carrying translocatable unit could be formed when excised from ICESpsuAH0906. ICESpsuAH0906 was found to be transferable from isolate AH0906 to Streptococcus suis P1/7RF at a relative high frequency of ∼ 10-5. Nonconservative integrations of ICESpsuAH0906 into the primary site SSU0877 and secondary site SSU1797 with 2-/4-nt imperfect direct repeats in recipient P1/7RF were observed. Upon transfer, the transconjugant displayed elevated MICs of the corresponding antimicrobial agents and performed a weak fitness cost when compared with the recipient strain. To our knowledge, it is the first description of the transfer of optrA in S. prarasuis and the first report of interspecies transfer of ICE with triplet serine integrases (of the ICESsuYZDH1 family). Considering the high transmission frequency of the ICEs and the extensive genetic exchange potential of S. parasuis with other streptococci, attention should be paid to the dissemination of the optrA gene from S. parasuis to clinically more important bacterial pathogens.


Assuntos
Anti-Infecciosos , Oxazolidinonas , Streptococcus suis , Animais , Genes Bacterianos , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA