Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 258: 119455, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906449

RESUMO

Heterogeneous catalytic processes based on zero-valent iron (ZVI) have been developed to treat soil and wastewater pollutants. However, the agglomeration of ZVI reduces its ability to activate persulfate (PS). In this study, a new Fe-Mn@AC activated material was prepared to activated PS to treat oil-contaminated soil, and using the microscopic characterization of Fe-Mn@AC materials, the electron transfer mode during the Fe-Mn@AC activation of PS was clarified. Firstly, the petroluem degradation rate was optimized. When the PS addition amount was 8%, Fe-Mn@AC addition amount was 3% and the water to soil ratio was 3:1, the petroluem degradation rate in the soil reached to the maximum of 85.69% after 96 h of reaction. Then it was illustrated that sulfate and hydroxyl radicals played major roles in crude oil degradation, while singlet oxygen contributed slightly. Finally, the indigenous microbial community structures remaining after restoring the Fe-Mn@AC/PS systems were analyzed. The proportion of petroleum degrading bacteria in soil increased by 23% after oxidation by Fe-Mn@AC/PS system. Similarly, the germination rate of wheat seeds revealed that soil toxicity was greatly reduced after applying the Fe-Mn@AC/PS system. After the treatment with Fe-Mn@AC/PS system, the germination rate, root length and bud length of wheat seed were increased by 54.05%, 7.98 mm and 6.84 mm, respectively, compared with the polluted soil group. These results showed that the advanced oxidation system of Fe-Mn@AC activates PS and can be used in crude oil-contaminated soil remediation.

2.
Nature ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885696

RESUMO

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium (LD) based haplotypes and association genetics analyses link Watkins genomes to the thousands of high-resolution quantitative trait loci (QTL), and significant marker-trait associations identified. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.

3.
Math Biosci Eng ; 20(6): 11063-11080, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37322971

RESUMO

Structured information especially medical events extracted from electronic medical records has extremely practical application value and play a basic role in various intelligent diagnosis and treatment systems. Fine-grained Chinese medical event detection is crucial in the process of structuring Chinese Electronic Medical Record (EMR). The current methods for detecting fine-grained Chinese medical events primarily rely on statistical machine learning and deep learning. However, they have two shortcomings: 1) they neglect to take into account the distribution characteristics of these fine-grained medical events. 2) they overlook the consistency in the distribution of medical events within each individual document. Therefore, this paper presents a fine-grained Chinese medical event detection method, which is based on event frequency distribution ratio and document consistency. To start with, a significant number of Chinese EMR texts are used to adapt the Chinese pre-training model BERT to the domain. Second, based on the fundamental features, the Event Frequency - Event Distribution Ratio (EF-DR) is devised to select distinct event information as supplementary features, taking into account the distribution of events within the EMR. Finally, using EMR document consistency within the model improves the outcome of event detection. Our experiments demonstrate that the proposed method significantly outperforms the baseline model.


Assuntos
Registros Eletrônicos de Saúde , Humanos , Aprendizado de Máquina
4.
Chem Asian J ; 18(4): e202201206, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36579778

RESUMO

Multifunctional materials are an attractive research area. Organic-inorganic hybrid perovskites are widely used in the design of these materials due to their rich properties and flexible composition. It is easy to obtain more photoelectric properties by introducing chiral groups as ligands. In this work, we synthesized chiral one-dimensional organic-inorganic hybrid perovskites, namely (R/S-3-HP)PbBr3 (1R/1S) (3-HP=3-hydroxy-piperidine). The enantiomer compounds undergo reversible phase transition at 349/336 K. Under the excitation light of 339 nm, 1R and 1S have a wide emission peak at 635 nm, showing orange light. In addition, the indirect bandgap is 3.29 eV and the SHG intensity is comparable to that of KDP. This work provides a way to design multifunctional chiral perovskite materials.

5.
Inorg Chem ; 61(45): 18267-18274, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36315140

RESUMO

In this work, the single crystal to single crystal (SCSC) transformations in three mononuclear copper complexes [CuL22]Cl2·2H2O (1), [CuL12Cl2] (2), and [CuL22]Cl2·4H2O (3) (L1 = di-2-pyridyl ketone, L2 = di(pyridin-2-yl)methanediol) are realized by the irreversible dehydration and hydration reaction of L1 and L2. Dark purple crystal 1 is obtained by self-assembly of L1 and CuCl2·2H2O in solvothermal reactions, in which the carbonyl group of L1 undergoes a hydration addition reaction to form L2. On heating, 1 transforms to 2 by dehydrating water accompanied by the change of the color and coordination octahedron of CuII ions. In a saturated water vapor environment, 2 can absorb six water molecules and transform to 3 with the same color and coordination environment with 1 but different lattice water. The SCSC process from 2 to 3 is reversible: 3 can transform back to 2 on heating like that of 1. Chroma rewritable behaviors in the structural transformation of the complexes make them visually identifiable temperature or water probes.

6.
Inorg Chem ; 61(27): 10454-10460, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35762569

RESUMO

Multifunctional materials have always been an attractive research area, but how to combine multiple excellent properties in one compound remains a considerable challenge. Organic-inorganic hybrid compounds are widely used in the design of such materials due to their rich properties and flexible assembly. Herein, two new manganese(II)-based organic-inorganic hybrid compounds, (C6NH16)2MnBr4 (1) and (C7NH18)2MnBr4 (2), are prepared by the solution method. Compounds 1 and 2 both emit extremely strong green light under UV excitation, with high quantum yields of 45.93 and 50.98%, respectively. In addition, reversible solid-state phase transitions and obvious switchable dielectric properties are shown at 378/366 and 361/352 K, respectively. The coexistence of the dual stimulus-response characteristics of temperature and light in compounds 1 and 2 opens a new path for exploring more multifunctional phase transition materials.

7.
Nanomaterials (Basel) ; 11(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578604

RESUMO

In this paper, using rice straw as a raw material and urea as a nitrogen precursor, a composite catalyst (a nitrogen-doped rice straw biochar at the pyrolysis temperature of 800 °C, recorded as NRSBC800) was synthesized by one-step pyrolysis. NRSBC800 was then characterized using XPS, BET, TEM and other technologies, and its catalytic performance as an activator for permonosulfate (PMS) to degrade acid orange 7 (AO7) was studied. The results show that the introduction of N-doping significantly improved the catalytic performance of NRSBC800. The NRSBC800/PMS oxidation system could fully degrade AO7 within 30 min, with the reaction rate constant (2.1 × 10 -1 min-1) being 38 times that of RSBC800 (5.5 × 10-3 min-1). Moreover, NRSBC800 not only had better catalytic performance than traditional metal oxides (Co3O4 and Fe3O4) and carbon nanomaterial (CNT) but also received less impact from environmental water factors (such as anions and humic acids) during the catalytic degradation process. In addition, a quenching test and electron paramagnetic resonance (EPR) research both indicated that AO7 degradation relied mainly on non-free radical oxidation (primarily singlet oxygen (1O2)). A recycling experiment further demonstrated NRSBC800's high stability after recycling three times.

8.
RSC Adv ; 11(62): 39467-39475, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492460

RESUMO

A series of rice husk biochar (RHBC) modified bimetallic oxides were prepared using a simple pyrolysis method to activate peroxymonosulfate (PMS) for the degradation of acid orange G (OG). The results demonstrated that 50 mg L-1 OG was completely decomposed by 1 mM PMS activated with 100 mg L-1 RHBC-CuCo2O4 within 15 min at initial pH 3.4. The OG degradation rate constant k of RHBC-CuCo2O4/PMS (0.95 × 10-1 min-1) was five times greater than that of CuCo2O4/PMS (0.19 × 10-1 min-1), suggesting that the introduction of RHBC significantly improved the activity of bimetallic oxides. The effects of the initial pH, catalyst dosage, PMS concentration and reaction temperature on OG removal were also studied. The degradation products of OG were analysed using a gas chromatography-mass spectrometer (GC-MS). Electron paramagnetic resonance (EPR) and quenching experiments showed that singlet oxygen (1O2) was the main active species. The RHBC-CuCo2O4/PMS oxidation system is not only unaffected by inorganic anions (Cl-, NO3 -, HCO3 -) and humic acid (HA), but also could remove other typical pollutants of acetaminophen (ACT), sulfathiazole (STZ), rhodamine B (RhB), and bisphenol A (BPA). These findings show that RHBC-CuCo2O4 has great potential for practical applications in the removal of typical organic pollutants.

9.
Nanomaterials (Basel) ; 9(5)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137519

RESUMO

In this study, a bimetallic oxide catalyst of cobalt-manganese (CoMn2O4) was synthesized using the sol-gel method, and it was then characterized using a variety of techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherms. The obtained novel catalyst, i.e., CoMn2O4, was then used as an activator of peroxymonosulfate (PMS) for the catalytic degradation of a commonly-used UV filter, 2-phenylbenzimidazole-5-sulfonic acid (PBSA) in water. The effects of various factors (e.g., catalyst dosage, PMS concentration, reaction temperature, and pH) in the process were also evaluated. Chemical scavengers and electron paramagnetic resonance (EPR) tests showed that the •OH and SO4•- were the main reactive oxygen species. Furthermore, this study showed that CoMn2O4 is a promising catalyst for activating PMS to degrade the UV filters.

10.
Cell Physiol Biochem ; 39(5): 1919-1929, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27771718

RESUMO

BACKGROUND: As the end product of the bacterial fermentation of dietary fiber in the colonic lumen, sodium butyrate (NaBt) has been reported to exert antitumor effects on colorectal cancer (CRC). In addition to functioning as a histone deacetylase (HDAC) inhibitor, NaBt also regulates the expression of microRNAs (miRNAs) to inhibit CRC cell proliferation. Yet, the mechanisms involved are not completely understood. Here we investigate whether NaBt regulates miR-203 to inhibit CRC growth and explore the promising target gene of miR-203 in CRC cells. METHODS: We conducted qRT-PCR and Western blotting assays to evaluate the effects of NaBt on the expression of miR-203 and NEDD9 in HT-29 and Caco-2 cell lines. The promising target gene of miR-203 was predicted by miRNA target prediction and dual luciferase reporter assay. CRC Cell proliferation, colony formation, cell apoptosis and cell invasion assays were performed to explore the effect of NaBt, miR-203 and NEDD9 on HT-29 and Caco-2 cell lines. RESULTS: The results showed that NaBt increased the expression of miR-203 to induce CRC cell apoptosis as well as inhibit cell proliferation, colony formation and cell invasion. Moreover, we determined that the NEDD9 was a target gene of miR-203. NEDD9 partially overcame the inhibitory effects of miR-203 on CRC cell colony formation and invasion. CONCLUSIONS: NaBt could induce CRC cell apoptosis, inhibit CRC cell proliferation, colony formation and invasion through miR-203/NEDD9 cascade. The present study may enrich the mechanisms underlying the process that NaBt exerts anti-tumor effects on CRC cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos/farmacologia , Ácido Butírico/farmacologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fosfoproteínas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Células CACO-2 , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Genes Reporter , Células HT29 , Humanos , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais
11.
Phys Chem Chem Phys ; 18(2): 801-10, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26626533

RESUMO

The S-doped mesoporous nanocomposite (S-TNT) of HTiNbO5 nanosheets (NSs) and anatase TiO2 nanoparticles (NPs) with exposed {101} facets has been successfully synthesized by first mixing freeze-dried HTiNbO5 NSs with titanium isopropoxide and then calcination with thiourea in air. The exposed anatase {101} facets can act as a possible reservoir of the photogenerated electrons, yielding a highly reactive surface for the reduction of O2 to O2˙(-). The partial substitution of Ti(4+) by S(6+) in the lattice of TiO2 NPs leads to a charge imbalance in S-TNT and the formation of Ti-O-S bonds. As a result, the formed cationic S-TNT favours adsorption of hydroxide ions (OH(-)(ads)) and thus captures the photo-induced holes to form hydroxyl radicals (˙OH). Moreover, with the formation of Ti-O-S bonds, partial electrons can be transferred from S to O atoms and hence the electron-deficient S atoms might capture photo-induced electrons. The surface-adsorbed SO4(2-) could also act as an efficient electron trapping center to promote the separation of charge carriers. In addition, the Ti(3+) species due to the removal of oxygen atoms during calcination and the associated oxygen vacancy defects on the surface of S-TNT could act as hole and electron scavengers, respectively. Besides, the closely contacted interface is formed between HTiNbO5 NSs and anatase TiO2 NPs due to the common features of TiO6 octahedra in two components, resulting in a nanoscale heterojunction structure to speed up the separation rate of photogenerated charge carriers. The formation of a nano-heterojunction and the incorporation of Ti(3+) and S dopants give rise to the visible and near-infrared light response of S-TNT. The combined effects greatly retard the charge recombination and improve the photocatalytic activity for the degradation of rhodamine B (RhB) and phenol solution under visible light irradiation. The corresponding photocatalytic mechanism was investigated via the active species capture experiments. The present work may provide an insight into the fabrication of delicate composite photocatalysts with excellent performance.

12.
Phys Chem Chem Phys ; 17(23): 15165-72, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25989966

RESUMO

S-doped Na2Ti6O13@TiO2 (S-TTO) core-shell nanorods, with exposed anatase TiO2 {101} facets, were synthesized by a facile calcination method. It was found that the addition of thiourea as the sulfur precursor was beneficial for the formation of anatase TiO2 with a better crystallinity and the doped sulfur atoms favorably stabilized the anatase structure. The substitution of Ti(4+) by S(6+) in the lattice of S-TTO gave rise to the visible light response and increased the amount of active groups typically as a hydroxyl radical adsorbed onto the catalyst surface. With the formation of the Ti-O-S bond, partial electrons could be transferred from S to O atoms. The electron-deficient S atoms might capture e(-) and thus inhibit the recombination of photogenerated electron-hole pairs. Meanwhile, a closely contacted interface was formed between Na2Ti6O13 and anatase TiO2, resulting in a nanoscale heterojunction structure to speed up the separation rate of photogenerated charge carriers. The exposed anatase {101} facets could act as possible reservoirs of the photogenerated electrons, yielding a highly reactive surface for the reduction of O2 to O2˙(-) and thus the decrease of recombination probability of electron-hole pairs. In addition, the anisotropically shaped titanate nanorods provided a pathway for the quick transport of charge carriers throughout the longitudinal direction. The combined effects of S doping, nano-heterojunction formation and morphology engineering led to an obviously enhanced photocatalytic performance for the degradation of methylene blue (MB) solution under visible light irradiation. The corresponding photocatalytic mechanism was investigated and discussed in detail. The present work may provide an insight into the fabrication of delicate composite photocatalysts with excellent performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA