Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Opt Lett ; 49(3): 658-661, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300083

RESUMO

Integrated optical modulators (IOMs) are crucial components of on-chip photonic circuits. However, most conventional IOMs are restricted to specific spectral bands. Here, we leveraged the wide transparency window of lithium niobate in conjunction with the two-pulley coupled resonator method. This approach led to the development of a hyperband electro-optic (EO) modulator that operates over an expansive spectral range from 775 to 1550 nm on a single device. The demonstrated EO modulator exhibits half-wave voltage-length products of 0.25, 0.93, and 0.68 V·cm at wavelengths of 1539.50, 969.70, and 775.17 nm, respectively.

2.
J Phys Chem Lett ; 15(6): 1590-1595, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306160

RESUMO

The Bi2O2Se surfaces are well-known to possess 50% Se vacancies, yet they have shown no in-gap states within the indirect bandgap (∼0.8 eV). We have found that the hidden in-gap states arising from the Se vacancies in a 2 × 1 pattern induce a reduced direct bandgap (∼0.5 eV). Such a reduced direct bandgap is responsible for the high electron mobility of Bi2O2Se. Moreover, the Bi oxide overlayers of the Bi thin films, formed through air exposure and annealing, unexpectedly exhibit a large direct bandgap (∼2.1 eV). The simplified fabrication of Bi oxide overlayers provides promise for improving Bi2O2Se electronic devices and enhancing photocatalytic activity.

3.
Opt Express ; 31(23): 39261-39278, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38018009

RESUMO

Quantum identity authentication serves as a crucial technology for secure quantum communication, but its security often faces challenges due to quantum hacking of measurement devices. This study introduces a measurement-device-independent mutual quantum identity authentication (MDI MQIA) scheme capable of ensuring secure user authentication, despite the use of measurement devices vulnerable to quantum hacking. To realize the MDI MQIA scheme, we proposed and applied a modified Bell state measurement based on linear optics, enabling the probabilistic measurement of all Bell states. Furthermore, the proposed experimental setup adopted a plug-and-play architecture, thus efficiently establishing the indistinguishability of two photons prepared by the communication members. Finally, we successfully performed a proof-of-principle experimental demonstration of the proposed scheme using a field-deployed fiber, achieving quantum bit error rates of less than 3%.

4.
Front Plant Sci ; 14: 1275438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023913

RESUMO

Acidovorax citrulli (Ac) is a causal agent of watermelon bacterial fruit blotch (BFB) disease. Because resistance cultivars/lines have not yet been developed, it is imperative to elucidate Ac's virulence factors and their mechanisms to develop resistant cultivars/lines in different crops, including watermelon. The glucose-6-phosphate isomerase (GPI) is a reversible enzyme in both glycolysis and gluconeogenesis pathways in living organisms. However, the functions of GPI are not characterized in Ac. In this study, we determined the roles of GpiAc (GPI in Ac) by proteomic and phenotypic analyses of the mutant lacking GPI. The mutant displayed significantly reduced virulence to watermelon in two different virulence assays. The mutant's growth patterns were comparable to the wild-type strain in rich medium and M9 with glucose but not with fructose. The comparative proteome analysis markedly identified proteins related to virulence, motility, and cell wall/membrane/envelope. In the mutant, biofilm formation and twitching halo production were reduced. We further demonstrated that the mutant was less tolerant to osmotic stress and lysozyme treatment than the wild-type strain. Interestingly, the tolerance to alkali conditions was remarkably enhanced in the mutant. These results reveal that GpiAc is involved not only in virulence and glycolysis/gluconeogenesis but also in biofilm formation, twitching motility, and tolerance to diverse external stresses suggesting the pleiotropic roles of GpiAc in Ac. Our study provides fundamental and valuable information on the functions of previously uncharacterized glucose 6-phosphate isomerase and its virulence mechanism in Ac.

6.
J Synchrotron Radiat ; 30(Pt 5): 923-933, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526993

RESUMO

The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kß XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d-3p electron exchange force and Kß emission core-hole lifetime.

7.
Sensors (Basel) ; 23(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37430706

RESUMO

Railway defects can result in substantial economic and human losses. Among all defects, surface defects are the most common and prominent type, and various optical-based non-destructive testing (NDT) methods have been employed to detect them. In NDT, reliable and accurate interpretation of test data is vital for effective defect detection. Among the many sources of errors, human errors are the most unpredictable and frequent. Artificial intelligence (AI) has the potential to address this challenge; however, the lack of sufficient railway images with diverse types of defects is the major obstacle to training the AI models through supervised learning. To overcome this obstacle, this research proposes the RailGAN model, which enhances the basic CycleGAN model by introducing a pre-sampling stage for railway tracks. Two pre-sampling techniques are tested for the RailGAN model: image-filtration, and U-Net. By applying both techniques to 20 real-time railway images, it is demonstrated that U-Net produces more consistent results in image segmentation across all images and is less affected by the pixel intensity values of the railway track. Comparison of the RailGAN model with U-Net and the original CycleGAN model on real-time railway images reveals that the original CycleGAN model generates defects in the irrelevant background, while the RailGAN model produces synthetic defect patterns exclusively on the railway surface. The artificial images generated by the RailGAN model closely resemble real cracks on railway tracks and are suitable for training neural-network-based defect identification algorithms. The effectiveness of the RailGAN model can be evaluated by training a defect identification algorithm with the generated dataset and applying it to real defect images. The proposed RailGAN model has the potential to improve the accuracy of NDT for railway defects, which can ultimately lead to increased safety and reduced economic losses. The method is currently performed offline, but further study is planned to achieve real-time defect detection in the future.

8.
Ultrasonics ; 134: 107100, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421699

RESUMO

Focused ultrasound (FUS) therapy has been widely studied for breast cancer treatment due to its potential as a fully non-invasive method to improve cosmetic and oncologic results. However, real-time imaging and monitoring of the therapeutic ultrasound delivered to the target area remain challenges for precision breast cancer therapy. The main objective of this study is to propose and evaluate a novel intelligence-based thermography (IT) method that can monitor and control FUS treatment using thermal imaging with the fusion of artificial intelligence (AI) and advanced heat transfer modeling. In the proposed method, a thermal camera is integrated into FUS system for thermal imaging of the breast surface, and an AI model is employed for the inverse analysis of the surface thermal monitoring, thereby estimating the features of the focal region. This paper presents experimental and computational studies conducted to assess the feasibility and efficiency of IT-guided FUS (ITgFUS). Tissue phantoms, designed to mimic the properties of breast tissue, were used in the experiments to investigate detectability and the impact of temperature rise at the focal region on the tissue surface. Additionally, an AI computational analysis employing an artificial neural network (ANN) and FUS simulation was carried out to provide a quantitative estimation of the temperature rise at the focal region. This estimation was based on the observed temperature profile on the breast model's surface. The results proved that the effects of temperature rise at the focused area could be detected by the thermal images acquired with thermography. Moreover, it was demonstrated that the AI analysis of the surface temperature measurement could result in near real-time monitoring of FUS by quantitative estimation of the temporal and spatial temperature rise profiles at the focal region.


Assuntos
Termografia , Terapia por Ultrassom , Termografia/métodos , Estudos de Viabilidade , Inteligência Artificial , Terapia por Ultrassom/métodos , Inteligência
9.
Plant Pathol J ; 39(3): 235-244, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37291764

RESUMO

Acidovorax citrulli (Ac) is a phytopathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops, including watermelon. However, there are no effective methods to control this disease. YggS family pyridoxal phosphate-dependent enzyme acts as a coenzyme in all transamination reactions, but its function in Ac is poorly understood. Therefore, this study uses proteomic and phenotypic analyses to characterize the functions. The Ac strain lacking the YggS family pyridoxal phosphate-dependent enzyme, AcΔyppAc(EV), virulence was wholly eradicated in geminated seed inoculation and leaf infiltration. AcΔyppAc(EV) propagation was inhibited when exposed to L-homoserine but not pyridoxine. Wild-type and mutant growth were comparable in the liquid media but not in the solid media in the minimal condition. The comparative proteomic analysis revealed that YppAc is primarily involved in cell motility and wall/membrane/envelop biogenesis. In addition, AcΔyppAc(EV) reduced biofilm formation and twitching halo production, indicating that YppAc is involved in various cellular mechanisms and possesses pleiotropic effects. Therefore, this identified protein is a potential target for developing an efficient anti-virulence reagent to control BFB.

10.
Phys Chem Chem Phys ; 24(46): 28250-28256, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36382534

RESUMO

In energy conversion techniques, two-dimensional (2D) thermoelectric materials with high performance are strongly required. This study scrutinizes the electronic and thermoelectric properties of 2D single-layer (1L) ZrTeSe4 based on first-principles calculations combined with Boltzmann transport theory. First-principles molecular dynamics simulations and phonon calculations confirm the thermodynamic stability of 1L-ZrTeSe4. Furthermore, the electron mobility of 1L-ZrTeSe4 is calculated to be ∼5706 cm2 V-1 s-1, which is much higher than that of the typical 2D semiconducting materials. Intriguingly, the calculated lattice thermal conductivity of 1L-ZrTeSe4 is found to be 3.16 W m-1 K-1 at room temperature, which is relatively smaller than that of 2D transition metal dichalcogenides. The maximum figure of merit ZT of 1L-ZrTeSe4 at 900 K is ∼0.8 for both p- and n-type doping at optimal carrier concentrations. As ZT could be improved through the manipulation of its electronic structure, this is an important clue indicating the enormous potential of 1L-ZrTeSe4 in thermoelectric application.

11.
Front Plant Sci ; 13: 1039420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438092

RESUMO

Acidovorax citrulli (Ac) is a gram-negative bacterium that causes bacterial fruit blotch (BFB) disease in cucurbit crops including watermelon. However, despite the great economic losses caused by this disease worldwide, Ac-resistant watermelon cultivars have not been developed. Therefore, characterizing the virulence factors/mechanisms of Ac would enable the development of effective control strategies against BFB disease. The 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (BdpM) is known to participate in the glycolysis and gluconeogenesis pathways. However, the roles of the protein have not been characterized in Ac. To elucidate the functions of BdpmAc (Bdpm in Ac), comparative proteomic analysis and diverse phenotypic assays were conducted using a bdpmAc knockout mutant (bdpmAc:Tn) and a wild-type strain. The virulence of the mutant to watermelon was remarkably reduced in both germinated seed inoculation and leaf infiltration assays. Moreover, the mutant could not grow with fructose or pyruvate as a sole carbon source. However, the growth of the mutant was restored to levels similar to those of the wild-type strain in the presence of both fructose and pyruvate. Comparative proteomic analyses revealed that diverse proteins involved in motility and wall/membrane/envelop biogenesis were differentially abundant. Furthermore, the mutant exhibited decreased biofilm formation and twitching halo size. Interestingly, the mutant exhibited a higher tolerance against osmotic stress. Overall, our findings suggest that BdpmAc affects the virulence, glycolysis/gluconeogenesis, biofilm formation, twitching halo size, and osmotic tolerance of Ac, suggesting that this protein has pleiotropic properties. Collectively, our findings provide fundamental insights into the functions of a previously uncharacterized phosphoglycerate mutase in Ac.

12.
Opt Express ; 30(16): 29461-29471, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299120

RESUMO

The commercialization of quantum key distribution (QKD), which enables secure communication even in the era of quantum computers, has acquired significant interest. In particular, plug-and-play (PnP) QKD has garnered considerable attention owing to its advantage in system stabilization. However, a PnP QKD system has limitations on miniaturization owing to a bulky storage line (SL) of tens of kilometers. And, the secure key rate is relatively low because Bob transmits the signal pulses only at the dedicated time slots to circumvent backscattering noise. This study proposes a new method that can eliminate the SL by realizing an optical pulse train generator based on an optical cavity structure. Our method allows Alice to generate optical pulse trains herself by duplicating Bob's seed pulse and excludes the need for Bob's strong signal pulses that trigger backscattering noise as much as the conventional PnP QKD. Accordingly, our method can naturally overcome the miniaturization limitation and the slow secure key rate, as the storage line is no longer necessary. We conducted a proof-of-concept experiment using our method and achieved a key generation rate of 1.6×10-3 count/pulse and quantum bit error rate ≤ 5%.

13.
J Synchrotron Radiat ; 29(Pt 5): 1309-1317, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073891

RESUMO

The Argonne X-ray Emission Analysis Package (AXEAP) has been developed to calibrate and process X-ray emission spectroscopy (XES) data collected with a two-dimensional (2D) position-sensitive detector. AXEAP is designed to convert a 2D XES image into an XES spectrum in real time using both calculations and unsupervised machine learning. AXEAP is capable of making this transformation at a rate similar to data collection, allowing real-time comparisons during data collection, reducing the amount of data stored from gigabyte-sized image files to kilobyte-sized text files. With a user-friendly interface, AXEAP includes data processing for non-resonant and resonant XES images from multiple edges and elements. AXEAP is written in MATLAB and can run on common operating systems, including Linux, Windows, and MacOS.


Assuntos
Análise de Dados , Aprendizado de Máquina não Supervisionado , Radiografia , Software , Raios X
14.
Plant Pathol J ; 38(4): 410-416, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35953061

RESUMO

Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.

15.
Sci Rep ; 12(1): 13652, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953693

RESUMO

The heterogeneous catalysts of Pt/transition-metal oxides are typically synthesized through calcination at 500 °C, and Pt nanoparticles are uniformly and highly dispersed when hydrogen peroxide (H2O2) is applied before calcination. The influence of H2O2 on the dispersion and the stability of Pt nanoparticles on titania-incorporated fumed silica (Pt/Ti-FS) supports was examined using X-ray absorption fine structure (XAFS) measurements at the Pt L3 and Ti K edges as well as density functional theory (DFT) calculations. The local structural and chemical properties around Pt and Ti atoms of Pt/Ti-FS with and without H2O2 treatment were monitored using in-situ XAFS during heating from room temperature to 500 °C. XAFS revealed that the Pt nanoparticles of H2O2-Pt/Ti-FS are highly stable and that the Ti atoms of H2O2-Pt/Ti-FS support form into a distorted-anatase TiO2. DFT calculations showed that Pt atoms bond more stably to oxidized-TiO2 surfaces than they do to bare- and reduced-TiO2 surfaces. XAFS measurements and DFT calculations clarified that the presence of extra oxygen atoms due to the H2O2 treatment plays a critical role in the strong bonding of Pt atoms to TiO2 surfaces.

16.
Nano Lett ; 22(4): 1672-1679, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133163

RESUMO

Engineering a strongly interacting uniform qubit cluster would be a major step toward realizing a scalable quantum system for quantum sensing and a node-based qubit register. For a solid-state system that uses a defect as a qubit, various methods to precisely position defects have been developed, yet the large-scale fabrication of qubits within the strong coupling regime at room temperature continues to be a challenge. In this work, we generate nitrogen vacancy (NV) color centers in diamond with sub-10 nm scale precision using a combination of nanoscale aperture arrays (NAAs) with a high aspect ratio of 10 and a secondary E-beam hole pattern used as an ion-blocking mask. We perform optical and spin measurements on a cluster of NV spins and statistically investigate the effect of the NAAs during an ion-implantation process. We discuss how this technique is effective for constructing a scalable system.

17.
Opt Lett ; 47(23): 6149-6152, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219194

RESUMO

Controlling the optical coupling between a micro-resonator and waveguide plays a key role in on-chip photonic circuits. Here, we demonstrate a two-point coupled lithium niobate (LN) racetrack micro-resonator that enables us to electro-optically traverse a full set of the zero-, under-, critical-, and over-coupling regimes with minimized disturbance of the intrinsic properties of the resonant mode. The modulation between the zero- and critical-coupling conditions cost a resonant frequency shift of only ∼344.2 MHz and rarely changed the intrinsic quality (Q) factor of 4.6 × 105. Our device is a promising element in on-chip coherent photon storage/retrieval and its applications.

18.
Plant Pathol J ; 37(6): 673-680, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34897258

RESUMO

Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.

19.
Sci Rep ; 11(1): 23590, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880289

RESUMO

Beyond the general purpose of noble gas ion sputtering, which is to achieve functional defect engineering of two-dimensional (2D) materials, we herein report another positive effect of low-energy (100 eV) He+ ion irradiation: converting n-type MoS2 to p-type by electron capture through the migration of the topmost S atoms. The electron capture ability via He+ ion irradiation is valid for supported bilayer MoS2; however, it is limited at supported monolayer MoS2 because the charges on the underlying substrates transfer into the monolayer under the current condition for He+ ion irradiation. Our technique provides a stable and universal method for converting n-type 2D transition metal dichalcogenides (TMDs) into p-type semiconductors in a controlled fashion using low-energy He+ ion irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA