Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(23): eabo3209, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675404

RESUMO

The patterning of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hydrogels with excellent electrical property and spatial resolution is a challenge for bioelectronic applications. However, most PEDOT:PSS hydrogels are fabricated by conventional manufacturing processes such as photolithography, inkjet printing, and screen printing with complex fabrication steps or low spatial resolution. Moreover, the additives used for fabricating PEDOT:PSS hydrogels are mostly cytotoxic, thus requiring days of detoxification. Here, we developed a previously unexplored ultrafast and biocompatible digital patterning process for PEDOT:PSS hydrogel via phase separation induced by a laser. We enhanced the electrical properties and aqueous stability of PEDOT:PSS by selective laser scanning, which allowed the transformation of PEDOT:PSS into water-stable hydrogels. PEDOT:PSS hydrogels showed high electrical conductivity of 670 S/cm with 6-µm resolution in water. Furthermore, electrochemical properties were maintained even after 6 months in a physiological environment. We further demonstrated stable neural signal recording and stimulation with hydrogel electrodes fabricated by laser.

2.
Nano Lett ; 22(1): 524-532, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34665632

RESUMO

The worldwide proliferation of COVID-19 poses the urgent need for sterilizable and transparent air filters to inhibit virus transmission while retaining ease of communication. Here, we introduce copper nanowires to fabricate transparent and self-sterilizable air filters. Copper nanowire air filter (CNAF) allowed visible light penetration, thereby can exhibit facial expressions, helpful for better communication. CNAF effectively captured particulate matter (PM) by mechanical and electrostatic filtration mechanisms. The temperature of CNAF could be controlled by Joule-heating up to 100 °C with thermal stability. CNAF successfully inhibited the growth of E. coli because of the oligodynamic effect of copper. With heat sterilization, the antibacterial efficiency against G. anodireducens was greatly improved up to 99.3% within 10 min. CNAF showed high reusability with stable filtration efficiency and thermal antibacterial efficacy after five repeated uses. Our result suggests an alternative form of active antimicrobial air filter in preparation for the current and future pandemic situations.


Assuntos
Filtros de Ar , COVID-19 , Escherichia coli , Filtração , Humanos , SARS-CoV-2 , Esterilização
3.
Adv Sci (Weinh) ; 8(20): e2102536, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34449132

RESUMO

Evolution has decided to gift an articular structure to vertebrates, but not to invertebrates, owing to their distinct survival strategies. An articular structure permits kinematic motion in creatures. However, it is inappropriate for creatures whose survival strategy depends on the high deformability of their body. Accordingly, a material in which the presence of the articular structure can be altered, allowing the use of two contradictory strategies, will be advantageous in diverse dynamic applications. Herein, spatial micro-water molecule manipulation, termed engineering on variable occupation of water (EVO), that is used to realize a material with dual mechanical modes that exhibit extreme differences in stiffness is introduced. A transparent and homogeneous soft material (110 kPa) reversibly converts to an opaque material embodying a mechanical gradient (ranging from 1 GPa to 1 MPa) by on-demand switching. Intensive theoretical analysis of EVO yields the design of spatial transformation scheme. The EVO gel accomplishes kinematic motion planning and shows great promise for multimodal kinematics. This approach paves the way for the development and application of smart functional materials.


Assuntos
Evolução Biológica , Amplitude de Movimento Articular/fisiologia , Vertebrados/fisiologia , Água/metabolismo , Animais , Fenômenos Biomecânicos , Movimento (Física)
4.
Nano Lett ; 19(9): 6087-6096, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31411037

RESUMO

Recent research progress of relieving discomfort between electronics and human body involves serpentine designs, ultrathin films, and extraordinary properties of nanomaterials. However, these strategies addressed thus far each face own limitation for achieving desired form of electronic-skin applications. Evenly matched mechanical properties anywhere on the body and imperceptibility of electronics are two essentially required characteristics for future electronic-skin (E-skin) devices. Yet accomplishing these two main properties simultaneously is still very challenging. Hence, we propose a novel fabrication method to introduce kirigami approach to pattern a highly conductive and transparent electrode into diverse shapes of stretchable electronics with multivariable configurability for E-skin applications. These kirigami engineered patterns impart tunable elasticity to the electrodes, which can be designed to intentionally limit strain or grant ultrastretchability depending on applications over the range of 0 to over 400% tensile strain with strain-invariant electrical property and show excellent strain reversibility even after 10 000 cycles stretching while exhibiting high optical transparency (>80%). The versatility of this work is demonstrated by ultrastretchable transparent kirigami heater for personal thermal management and conformal transparent kirigami electrophysiology sensor for continuous health monitoring of human body conditions. Finally, by integrating E-skin sensors with quadrotor drones, we have successfully demonstrated human-machine-interface using our stretchable transparent kirigami electrodes.


Assuntos
Nanoestruturas/química , Nanofios/química , Dispositivos Eletrônicos Vestíveis , Elasticidade , Condutividade Elétrica , Humanos
5.
Nano Lett ; 17(7): 4339-4346, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28609619

RESUMO

Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA