Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Manag Res ; 15: 957-975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693221

RESUMO

In recent years, the abnormal glucose metabolism of tumor cells has attracted increasing attention. Abnormal glucose metabolism is closely related to the occurrence and development of tumors. Monocarboxylate transporters (MCTs) transport the sugar metabolites lactic acid and pyruvate, which affect glucose metabolism and tumor progression in a variety of ways. Thus, research has recently focused on MCTs and their potential functions in cancer. The MCT superfamily consists of 14 members. MCT1 and MCT4 play a crucial role in the maintenance of intracellular pH in tumor cells by transporting monocarboxylic acids (such as lactate, pyruvate and butyrate). MCT1 and MCT4 are highly expressed in a variety of tumor cells and are involved the proliferation, invasion and migration of tumor cells, which are closely related to the prognosis of cancer. Because of their important functions in tumor cells, MCT1 and MCT4 have become potential targets for cancer treatment. In this review, we focus on the structure, function and regulation of MCT1 and MCT4 and discuss the developed inhibitors of MCT1 and MCT4 to provide more comprehensive information that might aid in the development of strategies targeting MCTs in cancer.

2.
Nanoscale Adv ; 5(6): 1527-1558, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926556

RESUMO

Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.

3.
Int J Nanomedicine ; 17: 6031-6046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36510619

RESUMO

Introduction: Sunitinib, a first-line therapy with a certain effect, was utilized in the early stages of renal cell carcinoma treatment. However, its clinical toxicity, side effects, and its limited bioavailability, resulted in inadequate clinical therapeutic efficacy. Building neoteric, simple, and safe drug delivery systems with existing drugs offers new options. Therefore, we aimed to construct a micelle to improve the clinical efficacy of sunitinib by reusing ibuprofen. Methods: We synthesized the sialic acid-poly (ethylene glycol)-ibuprofen (SA-PEG-IBU) amphipathic conjugate in two-step reaction. The SA-PEG-IBU amphiphilic conjugates can form into stable SPI nanomicelles in aqueous solution, which can be further loaded sunitinib (SU) to obtain the SPI/SU system. Following nanomicelle creation, sialic acid exposed to the nanomicelle surface can recognize the overexpressed E-selectin receptor on the membrane of cancer cells to enhance cellular uptake. The properties of morphology, stability, and drug release about the SPI/SU nanomicelles were investigated. Confocal microscopy and flow cytometry were used to assess the cellular uptake efficiency of nanomicelles in vitro. Finally, a xenograft tumor model in nude mice was constructed to investigate the body distribution and tumor suppression of SPI/SU in vivo. Results: The result showed that SPI nanomicelles exhibited excellent tumor targeting performance and inhibited the migration and invasion of tumor cell in vitro. The SPI nanomicelles can improve the accumulation of drugs in the tumor site that showed effective tumor inhibition in vivo. In addition, H&E staining and immunohistochemical analysis demonstrated that the SPI/SU nanomicelles had a superior therapeutic effect and lower biotoxicity. Conclusion: The SPI/SU nanomicelles displayed excellent anti-tumor ability, and can suppress the metastasis of tumor cell by decreasing the expression of Cyclooxygenase-2 due to the ibuprofen, providing an optimistic clinical application potential by developing a simple but safe drug delivery system.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Camundongos , Animais , Humanos , Micelas , Sunitinibe , Nanoconjugados , Ácido N-Acetilneuramínico , Camundongos Nus , Ibuprofeno , Polietilenoglicóis/química , Portadores de Fármacos/química , Linhagem Celular Tumoral
4.
J Nanobiotechnology ; 20(1): 476, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369077

RESUMO

Multidrug resistance (MDR) has been restricting the efficacy of chemotherapy, which mainly include pump resistance and non-pump resistance. In order to fight overall MDR, a novel targeted gene/drug co-deliver nano system is developed, which can suppress the drug efflux pumps and modulate autophagy to overcoming both pump and non-pump resistance. Here, small interfere RNA (siRNA) is incorporated into polymer-drug conjugates (PEI-PTX, PP) which are composed of polyethyleneimine (PEI) and paclitaxel (PTX) via covalent bonds, and hyaluronic acid (HA) is coated on the surface of PP/siRNA to achieve long blood cycle and CD44-targeted delivery. The RNA interference to mdr1 gene is combined with autophagy inhibition by PP, which efficiently facilitate apoptosis of Taxol-resistant lung cancer cells (A549/T). Further study indicates that PEI in PP may play a significant role to block the autophagosome-lysosome fusion process by means of alkalizing lysosomes. Both in vitro and in vivo studies confirm that the nanoassemblies can successfully deliver PTX and siRNA into tumor cells and significantly inhibited A549/T tumor growth. In summary, the polymeric nanoassemblies provide a potential strategy for combating both pump and non-pump resistance via the synergism of RNAi and autophagy modulation.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Humanos , RNA Interferente Pequeno/farmacologia , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Paclitaxel/farmacologia , Paclitaxel/química , Polietilenoimina/química , Neoplasias/tratamento farmacológico , Autofagia , Linhagem Celular Tumoral , Nanopartículas/química
5.
Int J Nanomedicine ; 17: 1987-2000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530975

RESUMO

Purpose: This study aimed to construct a delivery system based on L-arginine-modified calcium phosphate (CaP) to load eNOS plasmids (peNOS), which could amply nitric oxide (NO) to repair endothelial damage, promote angiogenic activities and alleviate inflammation. Methods: pDNA-loaded CaP nanocomplex (CaP/pDNA) were prepared by co-precipitation method, subsequently modified by L-arginine. The gene transfection efficiency, pro-angiogenic and anti-inflammatory ability were investigated in vivo and in vitro. The therapeutic effect on ischemic hindlimb in vivo was assessed. Results: L-arginine modification augmented the transfection efficiency of CaP/peNOS to elevate the eNOS expression, and then served as NO substrate catalyzed by eNOS. At the same time, calcium ions produced by degradation of CaP carriers enhanced the activity of eNOS. In vitro experiments, the loading capability and transfection performance of R(L)-CaP were confirmed to be superior to that of CaP. Additionally, HUVECs treated with R(L)-CaP/peNOS showed the strongest NO release, cell migration, tube formation and the lowest inflammatory levels compared to the CaP/peNOS and R(D)-CaP/peNOS groups. We also demonstrated the advantages of R(L)-CaP/peNOS in increasing blood reperfusion in hindlimb ischemia mice by accelerating angiogenesis and reducing inflammation, which can be attributed to the highest eNOS-derived NO production. Conclusion: The combination strategy of peNOS transfection, L-arginine supplement and calcium ions addition is a promising therapeutic approach for certain vascular diseases, based on the synergistic NO production.


Assuntos
Cálcio , Óxido Nítrico , Animais , Arginina/uso terapêutico , Cálcio/metabolismo , Técnicas de Transferência de Genes , Inflamação , Íons , Isquemia/terapia , Camundongos , Neovascularização Fisiológica , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo
6.
J Nanobiotechnology ; 20(1): 221, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526013

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease that can lead to disability. Blocking the complex malignant feedback loop system dominated by oxidative stress and pro-inflammatory factors is the key to treating OA. Here, we develop a multifunctional composite thermo-sensitive hydrogel (HPP@Cu gel), which is utilized by Poloxamer 407 (P407) and hyaluronic acid (HA) mixture as the gel matrix, then physically mixed with copper nanodots (Cu NDs) and platelet-rich plasma (PRP). Cu NDs is a novel nano-scavenger of reactive oxygen and nitrogen species (RONS) with efficient free radical scavenging activity. HPP@Cu gel is injected into the articular cavity, where it form an in situ gel that slowly released Cu NDs, HA, and PRP, prolonging the duration of drug action. Our results indicate that HPP@Cu gel could efficiently remove RONS from inflammatory sites and promote repolarization of macrophages to an anti-inflammatory phenotype. The HPP@Cu gel therapy dramatically reduces cartilage degradation and inflammatory factor production in OA rats. This study provides a reliable reference for the application of injectable hydrogels in inflammatory diseases associated with oxidative stress.


Assuntos
Osteoartrite , Plasma Rico em Plaquetas , Animais , Ácido Hialurônico , Hidrogéis/farmacologia , Macrófagos , Osteoartrite/tratamento farmacológico , Ratos
7.
Int J Nanomedicine ; 16: 7861-7873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880612

RESUMO

INTRODUCTION: This study aimed to construct a layered double hydroxide (LDH) nanoparticle delivery system that was modified by deoxycholic acid (DCA) and hyaluronic acid (HA) to increase the bioavailability of oral insulin. METHODS: LDH-DCA-HA was synthesized by the hybridization of DCA and HA with LDH. Subsequently, insulin was loaded onto LDH-DCA-HA, resulting in the formation of INS@LDH-DCA-HA. The in vivo and in vitro mechanisms of insulin release, as well as the efficiency of insulin absorption, were analyzed before and after DCA-HA modification. RESULTS: MTT assay showed that there was satisfactory biocompatibility between LDH-DCA-HA and Caco-2 cells at a concentration below 1000 µg/mL. Flow cytometry analysis revealed that Caco-2 cells absorbed INS@LDH-DCA-HA more readily than insulin. Measurement of transepithelial electrical resistance indicated that INS@LDH-DCA-HA induced the reversible opening of tight cell junctions, thereby facilitating its absorption. This was confirmed via laser confocal microscopy analysis, revealing that a large amount of zonula occludens-1 tight junction (TJ) protein was utilized for the paracellular pathway of nanoparticles. We also measured the blood glucose levels of type I diabetic mice and found that oral INS@LDH-DCA-HA exerted a steady hypoglycemic effect lasting 12 h, with a small range of postprandial blood glucose fluctuation. Immunofluorescence analysis showed that the strong penetration ability of INS@LDH-DCA-HA allowed insulin to enter epithelial cells more readily than free insulin. Finally, immunohistochemical analysis of anti-SLC10A1 protein confirmed that the cholic acid transporter receptor protein played a key role in the functioning of INS@LDH-DCA-HA. CONCLUSION: LDH nanoparticles modified by DCA and HA improved the absorption efficiency of insulin by opening the TJs of cells and interacting with the cholic acid transporter receptor protein.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas , Administração Oral , Animais , Células CACO-2 , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Ácido Hialurônico , Hidróxidos , Insulina/uso terapêutico , Camundongos
8.
Drug Deliv ; 28(1): 2329-2347, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34730054

RESUMO

In recent years, the incidence of various types of tumors has gradually increased, and it has also been found that there is a certain correlation between abnormal glucose and lipid metabolism and tumors. Glycolipid metabolism can promote tumor progression through multiple pathways, and the expression of related genes also directly or indirectly affects tumor metabolism, metastasis, invasion, and apoptosis. There has been much research on targeted drug delivery systems designed for abnormal glucose and lipid metabolism due to their accuracy and efficiency when used for tumor therapy. In addition, gene mutations have become an important factor in tumorigenesis. For this reason, gene therapy consisting of drugs designed for certain specifically expressed genes have been transfected into target cells to express or silence the corresponding proteins. Targeted gene drug vectors that achieve their corresponding therapeutic purposes are also rapidly developing. The genes related to glucose and lipid metabolism are considered as the target, and a corresponding gene drug carrier is constructed to influence and interfere with the expression of related genes, so as to block the tumorigenesis process and inhibit tumor growth. Designing drugs that target genes related to glucose and lipid metabolism within tumors is considered to be a promising strategy for the treatment of tumor diseases. This article summarizes the chemical drugs/gene drug delivery systems and the corresponding methods used in recent years for the treatment of abnormal glucose and lipid metabolism of tumors, and provides a theoretical basis for the development of glucolipid metabolism related therapeutic methods.


Assuntos
Terapia Genética/métodos , Glicólise/genética , Metabolismo dos Lipídeos/genética , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Animais , Portadores de Fármacos/química , Vetores Genéticos/administração & dosagem , Glucose/metabolismo , Glicolipídeos/metabolismo , Humanos , MicroRNAs/genética , Nanopartículas , RNA Interferente Pequeno/genética
10.
Colloids Surf B Biointerfaces ; 203: 111733, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33862572

RESUMO

Chemotherapy-photodynamic therapy (PDT)-based combination therapy is a currently frequently used means in cancer treatment that photosensitizer was able to generate reactive oxygen species (ROS) for improving chemotherapy, owing to the high oxidative stress of the tumor microenvironment (TME). Whereas, cancer cells were accustomed to oxidative stress by overexpression of antioxidant such as glutathione (GSH), which would consume the damage of ROS, as well as it could result in ineffective treatment. Herein, amplification of oxidative stress preferentially in tumor cells by consuming GSH or generating ROS is a reasonable treatment strategy to develop anticancer drugs. To achieve excellent therapeutic effects, we designed a GSH-scavenging and ROS-generating polymeric micelle mPEG-S-S-PCL-Por (MSLP) for amplifying oxidative stress and enhanced anticancer therapy. The amphiphilic polymer of methoxy poly(ethylene glycol) (mPEG)-S-S-poly(ε-caprolactone) (PCL)-Protoporphyrin (Por) was self-assembled into polymeric micelles with the anticancer drug doxorubicin (DOX) for treatment and tracking via FRET. Spherical DOX/MSLP micelles with the average size of 88.76 ±â€¯3.52 nm was procured with negatively charged surface, reduction sensitivity and high drug loading content (17.47 ±â€¯1.53 %). The intracellular ROS detection showed that the MSLP could deplete glutathione and regenerate additional ROS. The cellular uptake of DOX/MSLP micelles was grabbed real-time monitoring by the Fluorescence resonance energy transfer (FRET) effect between DOX and MSLP. The reduction-sensitive polymeric micelles MSLP as amplifying oxidative stress vehicles combined chemotherapy and PDT exhibited significant antitumor activity both in vitro (IC50 = 0.041 µg/mL) and much better antitumor efficacy than that of mPEG-PCL-Por (MLP) micelles in vivo.


Assuntos
Antineoplásicos , Micelas , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Estresse Oxidativo , Polietilenoglicóis , Polímeros
12.
Nanoscale Adv ; 3(6): 1656-1673, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36132550

RESUMO

In recent years, with the increasing understanding of the role of autophagy in tumorigenesis and development, a steady stream of studies have demonstrated that both excessive induction and inhibition of autophagy could effectively improve the therapeutic efficacy against tumors during cytotoxic or molecularly targeted drug therapy. Among them, autophagy inhibition mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as an effective adjuvant in chemotherapy or as a potential anti-tumor agent. Herein, we constructed a pH-sensitive nanoplatform loaded with epirubicin (EPI) (mPEG-b-P(DPA-b-DMAEMA)/EPI), enabling effective autophagy inhibition in the process of tumor-targeting therapy and further sensitized the tumors to EPI. It was found that polycationic nanomicelles (PEDD-Ms) displayed specific localization in lysosomes after entering tumor cells and caused the impairment of lysosomal degradation capacity through lysosomal alkalization in a dose-dependent manner. HepG2 cells treated with PEDD-Ms displayed a large-scale accumulation of autophagosomes and LC3 (an autophagosome marker protein), and the degradation of the autophagy substrate p62 was also blocked, which indicated that these functional nanomicelles could significantly inhibit autophagy. Meanwhile, the typical morphological characteristics of autophagosomes were directly visualized by TEM. In vivo results also showed that the tumor-targeted and autophagy inhibition-associated nanoplatform therapy could effectively improve the therapeutic efficiency of EPI, which may be partially attributed to the fact that autophagy inhibition could enhance the sensitivity of tumor cells to EPI. Overall, we revealed the effect of polycationic nanomicelles on autophagic processes in tumor cells and explored their possible molecular mechanism, also considering the synergistic outcome between autophagy mediated by nanomaterials and chemotherapeutic drugs to improve the therapeutic effect on tumors.

13.
Curr Drug Deliv ; 18(7): 1003-1013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33319683

RESUMO

BACKGROUND: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in Deep Tissue Injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. OBJECTIVE: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. METHODS: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. RESULTS: The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than the other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation. In contrast, control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-ß, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-ß, VEGF-A and phosphorylated-STAT3. CONCLUSION: Our results showed that CPNPs enhanced wound healing in DTI models through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


Assuntos
Curcumina , Nanopartículas , Animais , Liberação Controlada de Fármacos , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Cicatrização
14.
Int J Nanomedicine ; 15: 6311-6324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922003

RESUMO

BACKGROUND: Hyaluronic acid (HA) is a major component of extracellular matrix (ECM) and its over expression in tumor tissues contributes to the increase of interstitial fluid pressure (IFP) and hinders the penetration of nanoparticles into solid tumors. MATERIALS AND METHODS: We here reported a tumoral microenvironment responsive multistage drug delivery system (NPs-EPI/HAase) which was formed layer by layer via electrostatic interaction with epirubicin (EPI)-loaded PEG-b-poly(2-(diisopropylamino)ethyl methacrylate)-b-poly(2-guanidinoethylmethacrylate) (mPEG-PDPA-PG, PEDG) micelles (NPs-EPI) and hyaluronidase (HAase). In this paper, we focused on the hyaluronidase-combined nanoparticles (NPs-EPI/HAase) for tumor penetration in tumor spheroid and solid tumor models in vitro and in vivo. RESULTS: Our results showed that NPs-EPI/HAase effectively degrade the HA in ECM and facilitate deep penetration of NPs-EPI into solid tumor. Moreover, NPs-EPI mainly employed clathrin-mediated and macropinocytosis-mediated endocytic pathways for cellular uptake and were subsequently directed to the lysosomes for further drug release triggered by proton sponge effect. Compared with NPs-EPI, the HAase coating group showed an enhanced tumoral drug delivery efficacy and inhibition of tumor growth. CONCLUSION: Overall, our studies demonstrated that coating nanoparticles with HAase can provide a simple but efficient strategy for nano-drug carriers to enhance solid tumor penetration and chemotherapeutic efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Hialuronoglucosaminidase/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Endocitose/efeitos dos fármacos , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Humanos , Antígeno Ki-67/metabolismo , Masculino , Camundongos Nus , Nanopartículas/administração & dosagem , Neoplasias/patologia , Polímeros/química , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
15.
Int J Nanomedicine ; 15: 4877-4898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753869

RESUMO

BACKGROUND: Although dynamics and uses of modified nanoparticles (NPs) as orally administered macromolecular drugs have been researched for many years, measures of molecule stability and aspects related to important transport-related mechanisms which have been assessed in vivo remain as relatively under characterized. Thus, our aim was to develop a novel type of oral-based delivery system for insulin and to overcome barriers to studying the stability, transport mechanisms, and efficacy in vivo of the delivery system. METHODS: NPs we developed and tested were composed of insulin (INS), dicyandiamide-modified chitosan (DCDA-CS), cell-penetrating octaarginine (r8), and hydrophilic hyaluronic acid (HA) and were physically constructed by electrostatic self-assembly techniques. RESULTS: Compared to free-insulin, levels of HA-DCDA-CS-r8-INS NPs were retained at more desirable measures of biological activity in our study. Further, our assessments of the mechanisms for NPs suggested that there were high measures of cellular uptake that mainly achieved through active transport via lipid rafts and the macropinocytosis pathway. Furthermore, investigations of NPs indicated their involvement in caveolae-mediated transport and in the DCDA-CS-mediated paracellular pathway, which contributed to increasing the efficiency of sequential transportation from the apical to basolateral areas. Accordingly, high efficiency of absorption of NPs in situ for intestinal loop models was realized. Consequently, there was a strong induction of a hypoglycemic effect in diabetic rats of NPs via orally based administrations when compared with measures related to free insulin. CONCLUSION: Overall, the dynamics underlying and influenced by HA-DCDA-CS-r8-INS may hold great promise for stability of insulin and could help overcome interference by the epithelial barrier, and thus showing a great potential to improve the efficacy of orally related treatments.


Assuntos
Quitosana/química , Ácido Hialurônico/química , Insulina/administração & dosagem , Nanopartículas Multifuncionais/química , Nanopartículas/química , Administração Oral , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Morte Celular/efeitos dos fármacos , Quitosana/síntese química , Diabetes Mellitus Experimental/tratamento farmacológico , Impedância Elétrica , Endocitose/efeitos dos fármacos , Guanidinas/síntese química , Guanidinas/química , Humanos , Ácido Hialurônico/síntese química , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Insulina/uso terapêutico , Absorção Intestinal/efeitos dos fármacos , Masculino , Muco/metabolismo , Nanopartículas/ultraestrutura , Ratos , Solubilidade , Suínos
16.
Theranostics ; 10(20): 9132-9152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802183

RESUMO

Photodynamic therapy (PDT) is a promising strategy in cancer treatment that utilizes photosensitizers (PSs) to produce reactive oxygen species (ROS) and eliminate cancer cells under specific wavelength light irradiation. However, special tumor environments, such as those with overexpression of glutathione (GSH), which will consume PDT-mediated ROS, as well as hypoxia in the tumor microenvironment (TME) could lead to ineffective treatment. Moreover, PDT is highly light-dependent and therefore can be hindered in deep tumor cells where light cannot easily penetrate. To solve these problems, we designed oxygen-dual-generating nanosystems MnO2@Chitosan-CyI (MCC) for enhanced phototherapy. Methods: The TME-sensitive nanosystems MCC were easily prepared through the self-assembly of iodinated indocyanine green (ICG) derivative CyI and chitosan, after which the MnO2 nanoparticles were formed as a shell by electrostatic interaction and Mn-N coordinate bonding. Results: When subjected to NIR irradiation, MCC offered enhanced ROS production and heat generation. Furthermore, once endocytosed, MnO2 could not only decrease the level of GSH but also serve as a highly efficient in situ oxygen generator. Meanwhile, heat generation-induced temperature increase accelerated in vivo blood flow, which effectively relieved the environmental tumor hypoxia. Furthermore, enhanced PDT triggered an acute immune response, leading to NIR-guided, synergistic PDT/photothermal/immunotherapy capable of eliminating tumors and reducing tumor metastasis. Conclusion: The proposed novel nanosystems represent an important advance in altering TME for improved clinical PDT efficacy, as well as their potential as effective theranostic agents in cancer treatment.


Assuntos
Fatores Imunológicos/metabolismo , Nanopartículas/uso terapêutico , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/fisiologia , Microambiente Tumoral/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Glutationa/metabolismo , Humanos , Verde de Indocianina/metabolismo , Masculino , Compostos de Manganês/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Óxidos/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia/métodos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica/métodos
17.
Nanoscale ; 12(29): 15512-15527, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32441718

RESUMO

Nano-drug delivery systems (NDDS) are functional drug-loaded nanocarriers extensively applied in the healthcare and pharmaceutical areas. Recently, microfluidics has been demonstrated as one of the most promising techniques to fabricate high-performance NDDS with uniform morphology, size and size distribution, reduced batch-to-batch variations and controllable drug delivering capacity. Here, a brief review of the microfluidic-mediated NDDS is presented. The fundamentals of microfluidics are first interpreted with an emphasis on the fluid characteristics, design and materials for microfluidic devices. Then a comprehensive and in-depth depiction of the microfluidic-mediated fabrications of controllable NDDS with well-tailored internal structures and integrated functions for controlled encapsulation and drug release are categorized and reviewed, with particular descriptions about the underlying formation mechanisms. Afterwards, recently appreciated representative applications of the microfluidic-mediated NDDS for delivering multiple drugs are systematically summarized. Finally, conclusions and perspectives on further advancing the microfluidic-mediated NDDS toward more powerful and versatile platforms for therapeutic applications are discussed.


Assuntos
Microfluídica , Preparações Farmacêuticas , Liberação Controlada de Fármacos , Dispositivos Lab-On-A-Chip
18.
Nanoscale ; 12(20): 11008-11025, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32301458

RESUMO

Photodynamic therapy (PDT), as one of the most powerful photo-therapeutic strategies for cancer treatment with minimum invasiveness, can effectively damage local tumor cells and significantly induce systemic antitumor immunity. However, current nanotechnology-assisted PDT-immunomodulators have either poor penetration for deep tumors or low singlet oxygen generation. Herein, we construct a novel theranostic nanocarrier (HA-PEG-CyI, HPC) by inducing the self-assembly of PEGylated CyI and attaching the ligand HA to its surface. The prepared HPC can be used as an ideal PDT-immunomodulator for synergistic cancer therapy. CyI is an iodinated-cyanine dye with enhanced singlet oxygen generation ability as well as excellent photo-to-photothermal and near-infrared fluorescence imaging properties. Under 808 nm laser irradiation, the prepared HPC can generate both reactive oxygen species (ROS) and elevate temperature which can subsequently result in apoptosis and necrosis at tumor sites. Moreover, the HPC-induced cell death can generate a series of acute inflammatory reactions, leading to systemic immunity induction and secondary death of tumor cells, which further results in reducing tumor recurrence. In vitro and in vivo results show that HPC can enhance the tumor targeting efficacy, generate ROS efficiently and exhibit a high temperature response under NIR irradiation, which working together can activate immune responses for synergistic phototherapy on tumor cells. Accordingly, the proposed multi-functional HPC nanocarriers represent an important advance in PDT and can be used as a superior cancer treatment strategy with great promise for clinical applications.


Assuntos
Carbocianinas , Portadores de Fármacos , Hidrocarbonetos Iodados , Fatores Imunológicos , Nanoestruturas , Neoplasias Experimentais , Fotoquimioterapia , Animais , Apoptose/efeitos dos fármacos , Carbocianinas/química , Carbocianinas/farmacocinética , Carbocianinas/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Feminino , Humanos , Hidrocarbonetos Iodados/química , Hidrocarbonetos Iodados/farmacocinética , Hidrocarbonetos Iodados/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacocinética , Fatores Imunológicos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Células RAW 264.7
19.
Nanoscale ; 12(9): 5380-5396, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022069

RESUMO

9-Nitro-20(S)-camptothecin (9-NC) is a broad-spectrum antitumor drug used in tumor treatments, but its clinical applications and antitumor efficacy are limited by its structural instability, poor solubility, and extremely low drug utilization in tumor tissues. In this study, enzyme-sensitive nuclear-targeted dual-functional polymeric micelles were developed for 9-NC delivery with a high drug loading content (12.93 ± 0.88%), steady-state circulation, and a rapid attack at the "heart" of tumor cells. Briefly, chrysin (CHR) as a π-conjugated moiety was immobilized on the PCL terminal in the TAT-PCL amphiphiles and combined with the ALAL peptide as a linker on HA chains to yield the ultimate CHR-PCL-TAT-ALAL-HA (HATPC) amphiphiles. Spherical 9-NC-loaded micelles were obtained from the self-assembly of the dual-functional amphiphiles comprising HATPC and 9-NC with uniform nanosize (121.6 ± 5.79 nm), well-distributed morphology (PDI: 0.256), and negative surface charge (-23.2 ± 0.5 mV), yielding high stability during blood circulation. In this drug delivery system, HA acts as an active tumor-targeting instrument via CD44-receptor-mediated endocytosis; further, the ALAL peptide could be cutoff in the lysosomes of the tumor cells due to the high expression of cathepsin B, leading to lysosomal escape, while the secondary polymeric micelles targeted the tumor cell nucleus via the exposed TAT peptide. The enzyme sensitivity and nuclei targetability of the 9-NC/HATPC micelles were confirmed by dynamic light scattering and confocal laser scanning microscopy analyses. As compared to free 9-NC and traditional mPEG2k-PCL2k polymeric micelles, 9-NC/HATPC micelles were the most concentrated in the tumor cell nucleus; therefore, they exhibited the highest cytotoxicity against SKOV3 tumor cells both in vitro (IC50 = 0.03 µg mL-1) and in vivo. This enzyme-sensitive nuclear-targeted dual-functional drug delivery system involving HATPC provided a new and promising strategy for enhanced 9-NC delivery and antitumor efficacy.


Assuntos
Antineoplásicos Fitogênicos/química , Camptotecina/química , Portadores de Fármacos/química , Micelas , Polímeros/química , Animais , Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Camptotecina/metabolismo , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/síntese química , Humanos , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tamanho da Partícula , Peptídeos/química , Peptídeos/metabolismo , Transplante Heterólogo
20.
Drug Deliv ; 27(1): 200-215, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31983258

RESUMO

With the development of nanotechnology, self-assembled chitosan/phospholipid nanoparticles (SACPNs) show great promise in a broad range of applications, including therapy, diagnosis, in suit imaging and on-demand drug delivery. Here, a brief review of the SACPNs is presented, and its critical underlying formation mechanisms are interpreted with an emphasis on the intrinsic physicochemical properties. The state-of-art preparation methods of SACPNs are summarized, with particular descriptions about the classic solvent injection method. Then SACPNs microstructures are characterized, revealing the unique spherical core-shell structure and the drug release mechanisms. Afterwards, a comprehensive and in-depth depiction of their emerging applications, with special attention to drug delivery areas, are categorized and reviewed. Finally, conclusions and outlooks on further advancing the SACPNs toward a more powerful and versatile platform for investigations covering from fundamental understanding to developing multi-functional drug delivery systems are discussed.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Nanopartículas/química , Fosfolipídeos/química , Química Farmacêutica , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA