Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(10): 714, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353892

RESUMO

MAT2B works together with MAT2A to synthesize S-Adenosyl methionine (SAM) as the primary methyl donor. MAT2B, despite lacking catalytic activity, exerts regulatory control over the enzymatic activity of MAT2A. In addition to the enzymatic activity regulation, we find that, in an NADP+-dependent manner, MAT2B binds and stabilizes MAT2A. Disruption of the cellular NADP+ remodels the protein level of MAT2A. The pentose phosphatase pathway regulates the level of MAT2A protein through the interaction of NADP+ with MAT2B. Additionally, MAT2B-MAT2A interaction regulates the mRNA m6A modification and stability. In liver tumors, the Mat2a mRNA level is elevated but the protein level is decreased by the restricted NADP+. Blocking the interaction between MAT2B and MAT2A by the keto diet can suppress liver tumor growth. These findings reveal that MAT2B is essential for regulating the protein levels of MAT2A and connecting SAM synthesis to mRNA m6A.


Assuntos
Adenosina , Neoplasias Hepáticas , Metionina Adenosiltransferase , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/genética , Humanos , Adenosina/metabolismo , Adenosina/análogos & derivados , Animais , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , NADP/metabolismo , Camundongos , S-Adenosilmetionina/metabolismo , Linhagem Celular Tumoral , Ligação Proteica
2.
Hepatology ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557414

RESUMO

BACKGROUND AND AIMS: Epigenetic reprogramming and escape from terminal differentiation are poorly understood enabling characteristics of liver cancer. Keratin 19 (KRT19), classically known to form the intermediate filament cytoskeleton, is a marker of stemness and worse prognosis in liver cancer. This study aimed to address the functional roles of KRT19 in liver tumorigenesis and to elucidate the underlying mechanisms. APPROACH AND RESULTS: Using multiplexed genome editing of hepatocytes in vivo, we demonstrated that KRT19 promoted liver tumorigenesis in mice. Cell fractionation revealed a previously unrecognized nuclear fraction of KRT19. Tandem affinity purification identified histone deacetylase 1 and REST corepressor 1, components of the corepressor of RE-1 silencing transcription factor (CoREST) complex as KRT19-interacting proteins. KRT19 knockout markedly enhanced histone acetylation levels. Mechanistically, KRT19 promotes CoREST complex formation by enhancing histone deacetylase 1 and REST corepressor 1 interaction, thus increasing the deacetylase activity. ChIP-seq revealed hepatocyte-specific genes, such as hepatocyte nuclear factor 4 alpha ( HNF4A ), as direct targets of KRT19-CoREST. In addition, we identified forkhead box P4 as a direct activator of aberrant KRT19 expression in liver cancer. Furthermore, treatment of primary liver tumors and patient-derived xenografts in mice suggest that KRT19 expression has the potential to predict response to histone deacetylase 1 inhibitors especially in combination with lenvatinib. CONCLUSIONS: Our data show that nuclear KRT19 acts as a transcriptional corepressor through promoting the deacetylase activity of the CoREST complex, resulting in dedifferentiation of liver cancer. These findings reveal a previously unrecognized function of KRT19 in directly shaping the epigenetic landscape in cancer.

3.
Sci Adv ; 8(25): eabn5683, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731873

RESUMO

Mechanistic study and precision treatment of primary liver cancer (PLC) are hindered by marked heterogeneity, which is challenging to recapitulate in any given liver cancer mouse model. Here, we report the generation of 25 mouse models of PLC by in situ genome editing of hepatocytes recapitulating 25 single or combinations of human cancer driver genes. These mouse tumors represent major histopathological types of human PLCs and could be divided into three human-matched molecular subtypes based on transcriptomic and proteomic profiles. Phenotypical characterization identified subtype- or genotype-specific alterations in immune microenvironment, metabolic reprogramming, cell proliferation, and expression of drug targets. Furthermore, single-cell analysis and expression tracing revealed spatial and temporal dynamics in expression of pyruvate kinase M2 (Pkm2). Tumor-specific knockdown of Pkm2 by multiplexed genome editing reversed the Warburg effect and suppressed tumorigenesis in a genotype-specific manner. Our study provides mouse PLC models with defined genetic drivers and characterized phenotypical heterogeneity suitable for mechanistic investigation and preclinical testing.

4.
Nat Commun ; 13(1): 3486, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35710796

RESUMO

Mitochondria generate ATP and play regulatory roles in various cellular activities. Cancer cells often exhibit fragmented mitochondria. However, the underlying mechanism remains elusive. Here we report that a mitochondrial protein FUN14 domain containing 2 (FUNDC2) is transcriptionally upregulated in primary mouse liver tumors, and in approximately 40% of human hepatocellular carcinoma (HCC). Importantly, elevated FUNDC2 expression inversely correlates with patient survival, and its knockdown inhibits liver tumorigenesis in mice. Mechanistically, the amino-terminal region of FUNDC2 interacts with the GTPase domain of mitofusin 1 (MFN1), thus inhibits its activity in promoting fusion of outer mitochondrial membrane. As a result, loss of FUNDC2 leads to mitochondrial elongation, decreased mitochondrial respiration, and reprogrammed cellular metabolism. These results identified a mechanism of mitochondrial fragmentation in cancer through MFN1 inhibition by FUNDC2, and suggested FUNDC2 as a potential therapeutic target of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , GTP Fosfo-Hidrolases/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo
5.
Nat Commun ; 13(1): 3190, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680905

RESUMO

Histone marks, carriers of epigenetic information, regulate gene expression. In mammalian cells, H3K36me3 is mainly catalyzed by SETD2 at gene body regions. Here, we find that in addition to gene body regions, H3K36me3 is enriched at promoters in primary cells. Through screening, we identify SMYD5, which is recruited to chromatin by RNA polymerase II, as a methyltransferase catalyzing H3K36me3 at promoters. The enzymatic activity of SMYD5 is dependent on its C-terminal glutamic acid-rich domain. Overexpression of full-length Smyd5, but not the C-terminal domain-truncated Smyd5, restores H3K36me3 at promoters in Smyd5 knockout cells. Furthermore, elevated Smyd5 expression contributes to tumorigenesis in liver hepatocellular carcinoma. Together, our findings identify SMYD5 as the H3K36me3 methyltransferase at promoters that regulates gene expression, providing insights into the localization and function of H3K36me3.


Assuntos
Histonas , Lisina , Animais , Cromatina/genética , Código das Histonas , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/genética , Regiões Promotoras Genéticas/genética
6.
Cancers (Basel) ; 10(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453531

RESUMO

The Hippo pathway restricts organ size during development and its inactivation plays a crucial role in cancer. Yes-associated protein (YAP) and its paralog transcriptional coactivator with PSD-95/Dlg/ZO-1 (PDZ)-binding motif (TAZ) are transcription co-activators and effectors of the Hippo pathway mediating aberrant enlargement of organs and tumor growth upon Hippo pathway inactivation. It has been demonstrated that genetic inactivation of YAP could be an effective approach to inhibit tumorigenesis. In order to identify pharmacological inhibitors of YAP, we screened a library of 52,683 compounds using a YAP-specific reporter assay. In this screen we identified cyclopeptide RA-V (deoxybouvardin) as a specific inhibitor of YAP and TAZ but not other reporters. Unexpectedly, later experiments demonstrated that RA-V represses the protein but not mRNA levels of YAP target genes. Nevertheless, RA-V strongly blocks liver enlargement induced by Mst1/2 knockout. Furthermore, RA-V not only inhibits liver tumorigenesis induced by YAP activation, but also induces regression of established tumors. We found that RA-V inhibits dedifferentiation and proliferation, while inducing apoptosis of hepatocytes. Furthermore, RA-V also induces apoptosis and inhibits proliferation of macrophages in the microenvironment, which are essential for YAP-induced tumorigenesis. RA-V is thus a drug candidate for cancers involving YAP/TAZ activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA