Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 19(1): 17, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717643

RESUMO

In our previous study, we concluded that sirtuin 5 (SIRT5) was highly expressed in microglia following ischaemic stroke, which induced excessive neuroinflammation and neuronal injury. Therefore, SIRT5-targeting interventions should reduce neuroinflammation and protect against ischaemic brain injury. Here, we showed that treatment with a specific SIRT5 inhibitor, MC3482, alleviated microglia-induced neuroinflammation and improved long-term neurological function in a mouse model of stroke. The mice were administrated with either vehicle or 2 mg/kg MC3482 daily for 7 days via lateral ventricular injection following the onset of middle cerebral artery occlusion. The outcome was assessed by a panel of tests, including a neurological outcome score, declarative memory, sensorimotor tests, anxiety-like behavior and a series of inflammatory factors. We observed a significant reduction of infarct size and inflammatory factors, and the improvement of long-term neurological function in the early stages during ischaemic stroke when the mice were treated with MC3482. Mechanistically, the administration of MC3482 suppressed the desuccinylation of annexin-A1, thereby promoting its membrane recruitment and extracellular secretion, which in turn alleviated neuroinflammation during ischaemic stroke. Based on our findings, MC3482 offers promise as an anti-ischaemic stroke treatment that targets directly the disease's underlying factors.


Assuntos
Anexina A1 , AVC Isquêmico , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias , Regulação para Cima , Animais , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Masculino , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Anexina A1/metabolismo , Regulação para Cima/efeitos dos fármacos , Sirtuínas/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo
2.
Cell Biosci ; 13(1): 99, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248543

RESUMO

BACKGROUND: Excessive and unresolved neuroinflammation plays an important role in the pathophysiology of many neurological disorders, such as ischemic stroke, yet there are no effective treatments. Tripartite motif-containing 67 (TRIM67) plays a crucial role in the control of inflammatory disease and pathogen infection-induced inflammation; however, the role of TRIM67 in cerebral ischemia‒reperfusion injury remains poorly understood. RESULTS: In the present study, we demonstrated that the expression level of TRIM67 was significantly reduced in middle cerebral artery occlusion and reperfusion (MCAO/R) mice and primary cultured microglia subjected to oxygen-glucose deprivation and reperfusion. Furthermore, a significant reduction in infarct size and neurological deficits was observed in mice after TRIM67 upregulation. Interestingly, TRIM67 upregulation alleviated neuroinflammation and cell death after cerebral ischemia‒reperfusion injury in MCAO/R mice. A mechanistic study showed that TRIM67 bound to IκBα, reduced K48-linked ubiquitination and increased K63-linked ubiquitination, thereby inhibiting its degradation and promoting the stability of IκBα, ultimately inhibiting NF-κB activity after cerebral ischemia. CONCLUSION: Taken together, this study demonstrated a previously unidentified mechanism whereby TRIM67 regulates neuroinflammation and neuronal apoptosis and strongly indicates that upregulation of TRIM67 may provide therapeutic benefits for ischemic stroke.

3.
J Clin Med ; 11(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36556017

RESUMO

Hospital Acquired Pneumonia (HAP) is one of the most common complications and late causes of death in TBI patients. Targeted prevention and treatment of HAP are of great significance for improving the prognosis of TBI patients. In the previous clinical observation, we found that folic acid treatment for TBI patients has a good effect on preventing and treating HAP. We conducted this retrospective cohort study to demonstrate what we observed by selecting 293 TBI patients from two medical centers and analyzing their hospitalization data. The result showed that the incidence of HAP was significantly lower in TBI patients who received folic acid treatment (44.1% vs. 63.0%, p = 0.012). Multivariate logistic regression analysis showed that folic acid treatment was an independent protective factor for the occurrence of HAP in TBI patients (OR = 0.418, p = 0.031), especially in high-risk groups of HAP, such as the old (OR: 1.356 vs. 2.889), ICU (OR: 1.775 vs. 5.996) and severe TBI (OR: 0.975 vs. 5.424) patients. At the same time, cohort studies of HAP patients showed that folic acid also had a good effect on delaying the progression of HAP, such as reducing the chance of tracheotomy (26.1% vs. 50.8%, p = 0.041), and reduced the length of hospital stay (15 d vs. 19 d, p = 0.029) and ICU stay (5 d vs. 8 d, p = 0.046). Therefore, we believe that folic acid treatment in TBI patients has the potential for preventing and treating HAP, and it is worthy of further clinical research.

4.
J Neuroinflammation ; 19(1): 301, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517900

RESUMO

BACKGROUND: Microglia-induced excessive neuroinflammation plays a crucial role in the pathophysiology of multiple neurological diseases, such as ischaemic stroke. Controlling inflammatory responses is considered a promising therapeutic approach. Sirtuin 5 (SIRT5) mediates lysine desuccinylation, which is involved in various critical biological processes, but its role in ischaemic stroke remains poorly understood. This research systematically explored the function and potential mechanism of SIRT5 in microglia-induced neuroinflammation in ischaemic stroke. METHODS: Mice subjected to middle cerebral artery occlusion were established as the animal model, and primary cultured microglia treated with oxygen-glucose deprivation and reperfusion were established as the cell model of ischaemic stroke. SIRT5 short hairpin RNA, adenovirus and adeno-associated virus techniques were employed to modulate SIRT5 expression in microglia both in vitro and in vivo. Coimmunoprecipitation, western blot and quantitative real-time PCR assays were performed to reveal the molecular mechanism. RESULTS: In the current study, we showed that SIRT5 expression in microglia was increased in the early phase of ischaemic stroke. SIRT5 interacts with and desuccinylates Annexin A1 (ANXA1) at K166, which in turn decreases its SUMOylation level. Notably, the desuccinylation of ANXA1 blocks its membrane recruitment and extracellular secretion, resulting in the hyperactivation of microglia and excessive expression of proinflammatory cytokines and chemokines, ultimately leading to neuronal cell damage after ischaemic stroke. Further investigation showed that microglia-specific forced overexpression of SIRT5 worsened ischaemic brain injury, whereas downregulation of SIRT5 exhibited neuroprotective and cognitive-preserving effects against ischaemic brain injury, as proven by the decreased infarct area, reduced neurological deficit scores, and improved cognitive function. CONCLUSIONS: Collectively, these data identify SIRT5 as a novel regulator of microglia-induced neuroinflammation and neuronal damage after cerebral ischaemia. Interventions targeting SIRT5 expression may represent a potential therapeutic target for ischaemic stroke.


Assuntos
Anexina A1 , Isquemia Encefálica , AVC Isquêmico , Sirtuínas , Animais , Camundongos , Anexina A1/genética , Anexina A1/metabolismo , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/complicações , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Sirtuínas/genética , Sirtuínas/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA