Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1863, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424083

RESUMO

Simultaneous improvement of strength and conductivity is urgently demanded but challenging for bimetallic materials. Here we show by creating a self-assembled lamellar (SAL) architecture in W-Cu system, enhancement in strength and electrical conductivity is able to be achieved at the same time. The SAL architecture features alternately stacked Cu layers and W lamellae containing high-density dislocations. This unique layout not only enables predominant stress partitioning in the W phase, but also promotes hetero-deformation induced strengthening. In addition, the SAL architecture possesses strong crack-buffering effect and damage tolerance. Meanwhile, it provides continuous conducting channels for electrons and reduces interface scattering. As a result, a yield strength that doubles the value of the counterpart, an increased electrical conductivity, and a large plasticity were achieved simultaneously in the SAL W-Cu composite. This study proposes a flexible strategy of architecture design and an effective method for manufacturing bimetallic composites with excellent integrated properties.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770345

RESUMO

W-Cu composites are commonly subjected to coupled multiple fields in service, which imposes high requirements on their overall performance. In this study, the ultrafine-grained W-Cu composite was fabricated using the combination of electroless plating and spark plasma sintering. The wear resistance and high-temperature compressive properties of the ultrafine-grained W-Cu composite were investigated and compared with those of the commercial coarse-grained counterpart. Moreover, the underlying strengthening and wear mechanisms were also discussed. Here we show that the ultrafine-grained W-Cu composite exhibits superior integrated mechanical performance, making it a potential alternative to commercial W-Cu composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA