Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(28): 15207-15217, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37410056

RESUMO

Borylations of inert carbon-hydrogen bonds are highly useful for transforming feedstock chemicals into versatile organoboron reagents. Catalysis of these reactions has historically relied on precious-metal complexes, which promote dehydrogenative borylations with diboron reagents under oxidant-free conditions. Recently, photoinduced radical-mediated borylations involving hydrogen atom transfer pathways have emerged as attractive alternatives because they provide complimentary regioselectivities and proceed under metal-free conditions. However, these net oxidative processes require stoichiometric oxidants and therefore cannot compete with the high atom economy of their precious-metal-catalyzed counterparts. Herein, we report that CuCl2 catalyzes radical-mediated, dehydrogenative C(sp3)-H borylations of alkanes with bis(catecholato)diboron under oxidant-free conditions. This is a result of an unexpected dual role of the copper catalyst, which promotes oxidation of the diboron reagent to generate an electrophilic bis-boryloxide that acts as an effective borylating agent in subsequent redox-neutral photocatalytic C-H borylations.

2.
Angew Chem Int Ed Engl ; 61(34): e202207988, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35779000

RESUMO

Site-selective transition-metal-catalyzed mono-deboronative cross-couplings of 1,2-bis-boronic esters are valuable methods for the synthesis of functionalized organoboron compounds. However, such cross-couplings are limited to reaction of the sterically less hindered primary boronic ester. Herein, we report a nickel/photoredox-catalyzed mono-deboronative arylation of 1,2-bis-boronic esters that is selective for coupling of the more sterically hindered secondary/tertiary position. This is achieved by taking advantage of a 1,2-boron shift of primary ß-boryl radicals to the thermodynamically favored secondary/tertiary radicals, which are subsequently intercepted by the nickel catalyst to enable arylation. The mild conditions are amenable to a broad range of aryl halides to give ß-aryl boronic ester products in good yields and with high regioselectivity. This method also allows stereodivergent coupling of cyclic cis-1,2-bis-boronic esters to give trans-substituted products.


Assuntos
Boro , Níquel , Catálise , Ésteres , Estrutura Molecular
3.
Eur J Med Chem ; 228: 114010, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34861640

RESUMO

Due to unknown pathogenesis and unidentified drug target, no drug for the treatment of osteosarcoma (OS) has been launched to the market. Herein, thiazolidinone 1a was discovered as a hit compound by phenotypic screening with an in-house patrimonial collection of structural diversity. The following SAR (Structure-Activity Relationship) study affords the final water-soluble lead compound (R)-8i as a potential inhibitor for the proliferation of OS cells by the modulation of solubility of the compounds with remarkable cellular potency (IC50 = 21.9 nM for MNNG/HOS cells) and in vivo efficacy (52.9% inhibition OS growth in mice), as well as pharmacokinetic properties. (R)-8i also significantly suppresses OS cell migration in vitro and showed to be well-tolerated. Our preliminary investigation shows that the effects of (R)-8i are not dependent on p53 and myoferlin (MYOF). These results suggest that (R)-8i might be a potential drug candidate for OS treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Piridinas/farmacologia , Tiazolidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Osteossarcoma/patologia , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/química
4.
J Org Chem ; 86(14): 9306-9316, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34228462

RESUMO

A green and highly efficient one-pot method for α-diaryl-ß-alkynol derivatives in water at room temperature was developed using the cocatalysis of a Lewis acid and meso-tetraphenylporphyrin iron(III) chloride (FeTPPCl). The unprecedented transformation was promoted by a modulation of the charge properties of propargylic carbocation chemistry and the use of an in situ-generated oxonium ylide as a matching nucleophile. The reaction was performed in water at room temperature with a highly step-economic manipulation in good to excellent yields and with a broad substrate scope. Water also acts as the third reactant for the one-pot transformation. Notably, the FeTPPCl catalyst can be directly reused four times with a slight discount in yields.

5.
J Org Chem ; 86(9): 6847-6854, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844915

RESUMO

A Pd-catalyzed multicomponent reaction was developed by trapping oxomium ylide with nitrosobenzene via Pd-promoted umpolung chemistry. The Pd catalyst plays two important roles: diazo compound decomposed catalyst and Lewis acid for the activation of nitrosobenzene. This strategy provides some insight into a new way for discovery of multicomponent methodology to construct complex molecules. The developed method also provides rapid access to a series of O-(2-oxy) hydroxylamine derivatives, which exhibit good anticancer activity in osteosarcoma cells.


Assuntos
Oxigênio , Paládio , Catálise , Ácidos de Lewis
6.
Org Lett ; 21(16): 6413-6417, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31365268

RESUMO

The classic transformations of N-sulfonyl-1,2,3-triazoles were processed via nitrogen anion (hydrolysis, etc.) and carbene intermediates, and no efficient examples via radical intermediates were developed. Here, we reported a catalyst-free radical chain transformation of N-sulfonyl-1,2,3-triazoles to access an intermolecular oxidative C(sp3)-H coupling to yield N2-selective products in air without any catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA