Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Oncol ; 14: 1343533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410101

RESUMO

Background: Uterine leiomyosarcoma(uLMS) is a rare malignant tumor with low clinical specificity and poor prognosis.There are many studies related to uLMS, however, there is still a lack of metrological analyses with generalization. This study provides a bibliometric study of uLMS. Methods and materials: We chose the Web of Science (WoS) as our main database due to its extensive interdisciplinary coverage. We specifically focused on the literature from the last 20 years to ensure relevance and practicality. By utilizing the WOS core dataset and leveraging the R package "bibliometric version 4.1.0" and Citespace, we performed a comprehensive bibliometric analysis. This allowed us to pinpoint research hotspots and create visual representations, resulting in the retrieval of 2489 pertinent articles. Results: This literature review covers 2489 articles on uterine leiomyosarcoma (uLMS) from the past 20 years. Key findings include an average annual publication rate of 8.75, with a 6.07% yearly growth rate and an average citation count of 17.22. Core+Zone 2 sources contributed 1079 articles and 207 reviews, displaying a 4.98% annual growth rate. The analysis identified top journals, influential authors, and core sources, such as the prevalence of publications from the United States and the dominance of GYNECOLOGIC ONCOLOGY and HENSLEY ML. Bradford's Law and Lotka's Law highlighted core sources and author productivity, respectively. Thematic mapping and factorial analysis revealed research clusters, including etiology, diagnosis, treatment advancements, and surgical approaches, with prominent themes such as gemcitabine and docetaxel. Overall, this comprehensive analysis provides insights into uLMS literature trends and influential factors. Conclusion: This thorough bibliometric analysis, in its whole, illuminates the field's guiding principles while also revealing the subtle patterns within the uLMS literature. The knowledge gained here contributes to the current discussion in uLMS and related scientific fields and provides a solid basis for future research paths.

2.
Food Chem ; 445: 138738, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364497

RESUMO

This study successfully encapsulated the Ag+-doped Au nanoclusters (Ag/AuNCs) within the ZIF-8 framework to construct a novel Ag/AuNCs@ZIF-8 ratiometric fluorescent probe for the antibiotic doxycycline (DOX) detection. The incorporation of Ag+ contributed to the fluorescence enhancement of the nanoclusters through the "silver effect", consequently improving the stability of the developed bimetallic Ag/AuNCs. Furthermore, the encapsulation of bimetallic Ag/AuNCs within the ZIF-8 framework restricted their intramolecular vibrations, resulting in further amplification of fluorescence intensity at 595 nm. The ZIF-8 also sensitized the restoration of DOX green fluorescence at 515 nm. Within the concentration range of 0.001-20 µg mL-1, the ratio of fluorescence intensity (F515/F595) exhibited a favorable linearity for DOX concentration, with a detection limit of 36.8 ng mL-1. This ratiometric fluorescence approach had the promising potential for accurate and efficient quantitative detection of DOX residue in food and served as a valuable reference for rapid monitoring of food contaminants.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Doxiciclina , Ouro/química , Espectrometria de Fluorescência , Corantes Fluorescentes/química
3.
Food Chem ; 446: 138844, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422642

RESUMO

This study prepared a novel, portable and cost-effective microfluidic paper-based electrochemical analysis device (µ-PAD) using black phosphorus nanosheets@carboxylated multi-walled carbon nanotubes (BPNSs@MWCNTs-COOH) nanocomposites for ß-lactoglobulin (ß-LG) detection. At the appreciate ratio, the synthesized BPNSs@MWCNTs-COOH was demonstrated to not only serve as a high-quality substrate for the specific aptamer immobilization, but also improve the electron transfer capability of the sensing interface. The µ-PADs, utilizing BPNSs@MWCNTs-COOH and aptamer recognition, exhibited a wider detection range (10-1000 ng mL-1) and lower detection limit (LOD: 0.12 ng mL-1) for ß-LG, and demonstrated enhanced specificity, satisfactory anti-interference ability and stability. When applied to the ß-LG determination in dairy samples, the µ-PAD yielded ß-LG concentrations highly correlated with those obtained using the HPLC method (R2: 0.9982). These results emphasized the reliable performance of the developed µ-PADs in ß-LG allergen quantification, highlighting their potential as an efficient platform for the rapid screening of ß-LG allergens.


Assuntos
Lactoglobulinas , Nanotubos de Carbono , Limite de Detecção , Lactoglobulinas/análise , Microfluídica , Técnicas Eletroquímicas/métodos , Laticínios/análise , Alérgenos , Oligonucleotídeos
4.
Poult Sci ; 102(12): 103099, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812871

RESUMO

The presence of EVs in seminal plasma (SPEVs) suggests their involvement on fertility via transmitting information between the original cells and recipient cells. SPEVs-coupled miRNAs have been shown to affect sperm motility, maturation, and capacitation in mammals, but rarely in poultry species. The present study aims to reveal the profile of SPEVs miRNAs and their potential effect on sperm storage and function in poultry. The SPEVs was successfully isolated from 4 different chicken breeds by ultracentrifugation and verified. Deep sequencing of SPEVs small RNA library of each breed identified 1077 miRNAs in total and 563 shared ones. The top 10 abundant miRNAs (such as miR-10-5p, miR-100-5p, and miR-10a-5p etc.) accounted for around 60% of total SPEVs miRNA reads and are highly conserved across species, predisposing their functional significance. Target genes prediction and functional enrichment analysis indicated that the most abundantly expressed miRNAs may regulate pathways like ubiquitin-mediated proteolysis, endocytosis, mitophagy, glycosphingolipid biosynthesis, fatty acid metabolism, and fatty acid elongation. The high abundant SPEVs-coupled miRNAs were found to target 107 and 64 functionally important mRNAs in the potential recipient cells, sperm and sperm storage tubules (SST) cells, respectively. The pathways that enriched by target mRNAs revealed that the SPEVs-coupled miRNA may rule the fertility by affecting the sperm maturation and regulating the female's immune response and lipid metabolism. In summary, this study presents the distinctive repertoire of SPEVs-coupled miRNAs, and extends our understanding about their potential roles in sperm maturation, capacitation, storage, and fertility, and may help to develop new therapeutic strategies for male infertility and sperm storage.


Assuntos
Vesículas Extracelulares , MicroRNAs , Masculino , Feminino , Animais , Sêmen/metabolismo , Galinhas/genética , Galinhas/metabolismo , Motilidade dos Espermatozoides/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Ácidos Graxos , Mamíferos/genética
5.
J Transl Med ; 21(1): 654, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740183

RESUMO

BACKGROUND: The chimeric antigen receptor (CAR)-T therapy has a limited therapeutic effect on solid tumors owing to the limited CAR-T cell infiltration into solid tumors and the inactivation of CAR-T cells by the immunosuppressive tumor microenvironment. Macrophage is an important component of the innate and adaptive immunity, and its unique phagocytic function has been explored to construct CAR macrophages (CAR-Ms) against solid tumors. This study aimed to investigate the therapeutic application of CAR-Ms in ovarian cancer. METHODS: In this study, we constructed novel CAR structures, which consisted of humanized anti-HER2 or CD47 scFv, CD8 hinge region and transmembrane domains, as well as the 4-1BB and CD3ζ intracellular domains. We examined the phagocytosis of HER2 CAR-M and CD47 CAR-M on ovarian cancer cells and the promotion of adaptive immunity. Two syngeneic tumor models were used to estimate the in vivo antitumor activity of HER2 CAR-M and CD47 CAR-M. RESULTS: We constructed CAR-Ms targeting HER2 and CD47 and verified their phagocytic ability to ovarian cancer cells in vivo and in vitro. The constructed CAR-Ms showed antigen-specific phagocytosis of ovarian cancer cells in vitro and could activate CD8+ cytotoxic T lymphocyte (CTL) to secrete various anti-tumor factors. For the in vivo model, mice with human-like immune systems were used. We found that CAR-Ms enhanced CD8+ T cell activation, affected tumor-associated macrophage (TAM) phenotype, and led to tumor regression. CONCLUSIONS: We demonstrated the inhibition effect of our constructed novel HER2 CAR-M and CD47 CAR-M on target antigen-positive ovarian cancer in vitro and in vivo, and preliminarily verified that this inhibitory effect is due to phagocytosis, promotion of adaptive immunity and effect on tumor microenvironment.


Assuntos
Antígeno CD47 , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/terapia , Macrófagos , Fagocitose , Microambiente Tumoral
6.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3462-3471, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37474983

RESUMO

The flavonoids in Panax notoginseng were qualitatively analyzed by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UPLC-Q-TOF-MS), and the content of three main flavonoids in P. notoginseng of different specifications and grades collected from different habitats was determined by HPLC-DAD. Flavonoids and anthocyanins were analyzed by UPLC-Q-TOF-MS/MS in the positive and negative ion modes, respectively. Twelve flavonoid glycosides and one anthocyanin glycoside in P. notoginseng were identified, but no flavonoid aglycones were detected. Among them, 12 compounds were identified in the underground part of P. notoginseng for the first time and eight compounds were first reported in this plant. Moreover, six and four compounds were identified in the Panax genus and the Araliaceae family for the first time, respectively. A method for simultaneous determination of three flavonoids in P. notoginseng was established by HPLC-DAD. The content of flavonoids in 721 P. notoginseng samples of 124 specifications and grades collected from 20 different habitats was simultaneously determined. Among three flavonoids determined, the content of quercetin-3-O-(2″-ß-D-xylosyl)-ß-D-galactoside was the highest with the average content in the tested samples of 161.0 µg·g~(-1). The content of compounds quercetin-3-O-hexosyl-hexoside and kaempferol-3-O-pentosyl-hexoside was relatively low, with the average content of 18.5 µg·g~(-1)(calculated as quercetin-3-O-sophoroside) and 49.4 µg·g~(-1)(calculated as kaempferol-3-O-sangbu diglycoside). There were significant differences in flavonoids content of samples from different production area. The content of flavonoids in spring P. notoginseng was significantly lower than that in winter P. notoginseng when the other influencing factors such as production areas, germplasm resources, and cultivation conditions were fixed. As for P. notoginseng of different specifications, the flavonoid content in the part connecting the taproot and the aboveground stem was significantly higher than that in other parts. The results of large-scale data showed that the flavonoid content gradually increased with the increase in the number of heads. There were significant differences between the flavonoid content in most specifications and grades, especially the 20-head P. notoginseng and countless head P. notoginseng, whose content was significantly lower and significantly higher than that of other specifications and grades, respectively. This study provides a scientific basis for the study of the effective components and quality control of P. notoginseng from the perspective of flavonoids.


Assuntos
Antocianinas , Flavonoides , Flavonoides/análise , Antocianinas/análise , Quercetina , Cromatografia Líquida de Alta Pressão/métodos , Quempferóis , Espectrometria de Massas em Tandem/métodos , Glicosídeos
7.
Anal Chim Acta ; 1266: 341331, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244661

RESUMO

Ensuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification. Immunoassay strategies based on antigen-antibody specific binding are one of the important means for accurate and rapid detection of trace contaminants in food. Emerging MOFs and their composites with excellent properties are being synthesized, providing new ideas for immunoassays. This article summarizes the synthesis strategies of MOFs and MOF-based composites and their applications in the immunoassays of food contaminants. The challenges and prospects of the preparation and immunoassay applications of MOF-based composites are also presented. The findings of this study will contribute to the development and application of novel MOF-based composites with excellent properties and provide insights into advanced and efficient strategies for developing immunoassays.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Imunoensaio , Inocuidade dos Alimentos , Porosidade
8.
J Cancer ; 14(2): 219-230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741258

RESUMO

Catenin alpha 1 (CTNNA1), encoding α-catenin, is involved in several physiological activities, such as adherens junction synthesis and signal transduction. Recent studies have suggested additional functions for CTNNA1 malignancies. This review systematically summarizes the varying functions of CTNNA1 in different tumors and briefly describes the diverse pathways and mechanisms involved in different types of tumors. CTNNA1 is abnormally expressed in leukemia and solid tumor such as cancers of digestive system, genitourinary system and breast, and it's related to the occurrence, development, and prognosis of tumors. In addition, the possible physiological processes involving CTNNA1, such as methylation, miRNA interference, or regulatory axes, similar to those of CDH1, SETD2, and hsa-miR-30d-5p/GJA1 are also summarized here. The precise mechanism of CTNNA1 in most cancers remains uncertain; hence, additional pre-clinical studies of CTNNA1 are warranted for potential early tumor diagnosis, prognosis, and treatment.

9.
J Oncol ; 2022: 1544648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578791

RESUMO

The ever-increasing morbidity associated with gynecological malignancies constantly endangers the physical and psychological health of women. Since a long time, there has been an urgent need for a deeper understanding of the tumorigenesis and the development of gynecological cancer to identify new molecular markers for early diagnosis and metastatic disease prognosis and for the development of therapeutic targets. MicroRNAs are crucial cellular regulators. The microRNA-10 (miR-10) family has been found to play an integral role in the evolution of numerous cancer types. A comprehensive understanding of current studies on miR-10 could provide better insights into future research and clinical applications in related fields. This article reviews the latest research on the role of the miR-10 family in gynecological malignancies and the relevant molecular mechanism, mainly focusing on endometrial, cervical, and ovarian cancers.

10.
Front Vet Sci ; 9: 1042445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452144

RESUMO

Due to the lack of high-quality Sika Deer (Cervus nippon) transcriptome and sRNAome across multiple organs or development stages, it is impossible to comprehensively analyze the mRNA and miRNA regulatory networks related to growth, development and immunity response. In this study, we used single molecule-real time sequencing (SMRT-seq) and Illumina sequencing methods to generate transcriptome and sRNAome from ten tissues and four age groups of Sika Deer to help us understand molecular characteristics and global miRNA expression profiles. The results showed that a total of 240,846 consensus transcripts were generated with an average length of 2,784 bp. 4,329 Transcription factors (TFs), 109,000 Simple Sequence Repeats (SSRs) and 18,987 Long non-coding RNAs (LncRNAs) were identified. Meanwhile, 306 known miRNAs and 143 novel miRNAs were obtained. A large number of miRNAs showed organ-specific and age-specific differential expression patterns. In particular, we found that the organ-specific miRNAs were enriched in the brain, some of which shared only between the brain and adrenal. These miRNAs were involved in maintaining specific functions within the brain and adrenal. By constructing miRNA96mRNA interaction networks associated with Sika Deer immunity, we found that miRNAs (miR-148a, miR-26a, miR-214, let-7b, etc.) and mRNAs (CD6, TRIM38, C3, CD163, etc.) might play an important role in the immune response of Sika Deer spleen. Together, our study generated an improved transcript annotation for Sika Deer by SMRT-seq and revealed the role of miRNA in regulating the growth, development and immunity response of Sika Deer.

11.
Microb Pathog ; 173(Pt A): 105877, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371064

RESUMO

Yersinia enterocolitica (Y. enterocolitica) is a gastrointestinal pathogen that is distributed worldwide, involved in systemic, extraintestinal and invasive infections in immunocompromised patients. Establishment of antibiotic resistance in the pathogen has produced a need for new antibacterial agents. The purpose of this study was to elucidate antibacterial mechanism of protocatechualdehyde (PCA) extracted from the roots of Salvia miltiorrhiza towards Y. enterocolitica, and to investigate effects of PCA on key virulence factors associated with human infection. Present results indicated that PCA exerted its antibacterial activity against Y. enterocolitica mainly by the rapid rise of intracellular reactive oxygen species, leading to change in permeability and integrity of cell membrane, and ultimately decline of membrane potential and intracellular ATP. Furthermore, scanning electron microscopic analysis revealed that Y. enterocolitica presented gradually shrinkage in length and partial wrinkles upon PCA treatment. PCA also effectively decreased motility, biofilm formation, quorum sensing in a dose-dependent manner without affecting bacterial growth. Further, at SICs, PCA substantially suppressed the adhesion and invasion of Y. enterocolitica to HT-29 cells and the downregulation of essential virulence factor-encoding genes unveiled impaired virulence. Overall, the findings revealed the potential of PCA as an alternative antibacterial agent to combat Y. enterocolitica contamination and infections.


Assuntos
Yersiniose , Yersinia enterocolitica , Humanos , Yersinia enterocolitica/genética , Yersiniose/microbiologia , Fatores de Virulência/genética , Antibacterianos/farmacologia
12.
Front Immunol ; 13: 1001201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248862

RESUMO

PU.1, a transcription factor member of the E26 transformation-specific family, affects the function of a variety of immune cells in several physiological and pathological conditions. Previous studies studying the role of PU.1 in pathological conditions have mainly focused on immune system-related cancers, and a series of articles have confirmed that PU.1 mutation can induce a variety of immune cell-related malignancies. The underlying mechanism has also been extensively validated. However, the role of PU.1 in other major immune system-related diseases, namely, systemic autoimmune diseases, is still unclear. It was only in recent years that researchers began to gradually realize that PU.1 also played an important role in a variety of autoimmune diseases, such as rheumatoid arthritis (RA), experimental autoimmune encephalomyelitis (EAE) and systemic lupus erythematosus (SLE). This review article summarizes the findings of recent studies that investigated the role of PU.1 in various autoimmune diseases and the related underlying mechanisms. Furthermore, it presents new ideas and provides insight into the role of PU.1 as a potential treatment target for autoimmune diseases and highlights existing research problems and future research directions in related fields.


Assuntos
Encefalomielite Autoimune Experimental , Lúpus Eritematoso Sistêmico , Neoplasias , Animais , Proteínas Proto-Oncogênicas , Transativadores/genética , Fatores de Transcrição
13.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293393

RESUMO

Root-zone CO2 is a major factor that affects crop growth, development, nutrient uptake, and metabolism. Oriental melon is affected by root-zone gases during growth, the microstructure, sugar and starch contents, enzymatic activities related to sugar and starch metabolism, and gene expression in the roots of oriental melon seedlings were investigated under three root-zone CO2 concentrations (CK: 0.2%, T1: 0.4%, T2: 1.1%). Elevated root-zone CO2 altered the cellular microstructure, accelerated the accumulation and release of starch grains, disrupted organelle formation, and accelerated root senescence. The sugar and starch contents and metabolic activity in the roots increased within a short duration following treatment. Compared to the control, 232 and 1492 differentially expressed genes (DEGs) were identified on the 6th day of treatment in T1 and T2 plants, respectively. The DEGs were enriched in three metabolic pathways. The majority of genes related to sucrose and starch hydrolysis were upregulated, while the genes related to sucrose metabolism were downregulated. The study revealed that oriental melon seedlings adapt to elevated root-zone CO2 stress by adjusting sugar and starch metabolism at the transcriptome level and provides new insights into the molecular mechanism underlying the response to elevated root-zone CO2 stress.


Assuntos
Cucumis melo , Plântula , Plântula/metabolismo , Transcriptoma , Dióxido de Carbono/metabolismo , Açúcares/metabolismo , Amido/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Cucumis melo/genética , Carboidratos , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142602

RESUMO

Root-zone CO2 is essential for plant growth and metabolism. However, the partitioning and assimilation processes of CO2 absorbed by roots remain unclear in various parts of the oriental melon. We investigated the time at which root-zone CO2 enters the oriental melon root system, and its distribution in different parts of the plant, using 13C stable isotopic tracer experiments, as well as the effects of high root-zone CO2 on leaf carbon assimilation-related enzyme activities and gene expressions under 0.2%, 0.5% and 1% root-zone CO2 concentrations. The results showed that oriental melon roots could absorb CO2 and transport it quickly to the stems and leaves. The distribution of 13C in roots, stems and leaves increased with an increase in the labeled root-zone CO2 concentration, and the δ13C values in roots, stems and leaves increased initially, and then decreased with an increase in feeding time, reaching a peak at 24 h after 13C isotope labeling. The total accumulation of 13C in plants under the 0.5% and 1% 13CO2 concentrations was lower than that in the 0.2% 13CO2 treatment. However, the distributional proportion of 13C in leaves under 0.5% and 1% 13CO2 was significantly higher than that under the 0.2% CO2 concentration. Photosynthetic carbon assimilation-related enzyme activities and gene expressions in the leaves of oriental melon seedlings were inhibited after 9 days of high root-zone CO2 treatment. According to these results, oriental melon plants' carbon distribution was affected by long-term high root-zone CO2, and reduced the carbon assimilation ability of the leaves. These findings provide a basis for the further quantification of the contribution of root-zone CO2 to plant communities in natural field conditions.


Assuntos
Cucumis melo , Plântula , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo
15.
J Alzheimers Dis ; 87(3): 957-968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431253

RESUMO

BACKGROUND: Epidemiologic evidence suggests that physical activity benefits cognition, but results from randomized trials in sedentary individuals are limited and inconsistent. OBJECTIVE: To evaluate the effects of physical activity on cognition among sedentary older adults. OBJECTIVE: A systematic literature search for eligible studies published up to January 1, 2021, was performed on six international (PubMed, Cochrane Library, Web of Science, Sinomed, FMRS, and OVID) and three Chinese databases (Wanfang, China National Knowledge Infrastructure, and VIP). We estimated the effect of physical activity on the cognition of sedentary elderly by standardized mean differences (SMD) and 95% confidence intervals (CI) using a random-effects model. We evaluated publication bias using funnel plots and heterogeneity using I2 statistics. Subgroup analyses were conducted by baseline cognition, intervention duration, activity type, and country. RESULTS: Seven randomized controlled trials (RCTs) comprising 321 (experimental group, 164; control group, 157) sedentary older adults were included in the meta-analysis. Physical activity significantly improved cognition in sedentary elderly adults compared with controls (SMD: 0.50, 95% CI:0.09-0.92). Subgroup analyses showed significant effects of baseline cognition impairment (SMD: 9.80, 95% CI: 5.81-13.80), intervention duration > 12 weeks (SMD: 2.85, 95% CI: 0.73-4.96), aerobic exercise (SMD: 0.74, CI: 0.19-1.29), and countries other than the United States (SMD: 10.50, 95% CI: 7.08-13.92). CONCLUSION: Physical activity might have a general positive effect on the cognition of sedentary older adults. Intervention > 12 weeks and aerobic exercise can effectively delay their cognitive decline; however, more rigorous RCTs are needed to support our findings.


Assuntos
Disfunção Cognitiva , Exercício Físico , Idoso , China , Cognição , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
Foodborne Pathog Dis ; 19(5): 349-358, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35443788

RESUMO

Shigella flexneri, a common Gram-negative foodborne pathogen, is widely distributed in fresh-cut fruits and vegetables, unpasteurized milk, and food processing environments. The aims of this study were to evaluate the antibacterial effects of 405-nm light-emitting diode (LED) treatment on S. flexneri and to investigate the possible mechanism. The results showed that LED irradiation (360 min) reduced the number of S. flexneri in phosphate-buffered saline by 3.29 log colony-forming unit (CFU)/mL (initial bacterial count: 6.81 log CFU/mL). The cells in reconstituted infant formula, cells on fresh-cut carrot slices, and biofilm-associated cells on stainless steel surfaces were reduced by 1.83 log CFU/mL, 7.00 log CFU/cm2, and 4.35 log CFU/cm2 following LED treatment for 360, 120, and 120 min, respectively. LED treatment damaged both DNA and cell wall of S. flexneri and changed cell morphology and cell membrane permeability. In addition, LED treatment decreased total cell protein concentration of S. flexneri. These results indicated that 405-nm LED treatment effectively controlled S. flexneri contamination of foods and food contact surfaces and that the bacterial inactivation may be the result of damage to multiple cellular components. These findings highlight the potential of LED technology in controlling S. flexneri during food processing, storage, and preparation.


Assuntos
Microbiologia de Alimentos , Shigella flexneri , Contagem de Colônia Microbiana , Manipulação de Alimentos , Humanos , Aço Inoxidável
17.
PLoS One ; 16(10): e0258327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653186

RESUMO

General combining ability (GCA) is an important index for inbred lines breeding of maize. To identify the genetic loci of GCA and associated agronomic traits, an association analysis with 195 SSRs was made in phenotypic traits of 240 F1 derived from 120 elite inbred lines containing current breeding resources of maize crossed with 2 testers (Zheng58 and Chang7-2) in two places in 2018. All of the 20 association loci detected for grain yield (GY), plant height (PH), ear height (EH) and GCA for the three traits in two places could explain a phenotypic variation range of 7.31%-9.29%. Among the 20 association loci, 9 (7.31%-9.04%) were associated with GY, 4 (7.22%-8.91%) were related to GCA of GY, 1 (7.56%) was associated with PH, and 3 (7.53%-8.96%) were related to EH. In addition, 3 loci (9.14%-9.29%) were associated with GCA of PH whereas no locus was identified for GCA of EH. In the comparison of the association loci detected in Baoding and Handan, interestingly, one locus (7.69% and 8.11%) was identified in both environments and one locus (7.52% and 7.82%) was identified for yield and GCA of yield. Therefore, the identification of GY-, PH-, EH- and GCA-related association loci could not only provide references for high yield breeding of maize, but also help us comprehend the relationships among GY, agricultural traits and GCA.


Assuntos
Mapeamento Cromossômico , Cruzamentos Genéticos , Zea mays/anatomia & histologia , Zea mays/genética , Marcadores Genéticos , Variação Genética , Endogamia , Desequilíbrio de Ligação/genética , Fenótipo , Locos de Características Quantitativas/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-34500403

RESUMO

Lead compound is an important concept for modern drug discovery. In this study, a new concept of lead chemome and an efficient strategy to discover lead chemome were proposed. Compared with the concept of lead compound, lead chemome can provide not only the starting point for drug development, but also the direction for structure optimization. Two traditional Chinese medicines of Mahonia bealei and Mahonia fortunei were used as examples to illustrate the strategy. Based on natural chromatogram-effect correlation (NCEC), berberine, palmatine and jatrorrhizine were discovered as acetylcholinesterase (AchE) inhibitors. Taking the three compounds as template molecules, a lead chemome consisting of 10 structurally related natural compounds were generated through natural structure-effect correlation (NSEC). In the lead chemome, the IC50 values of jatrorrhizine, berberine, coptisine, palmatine and epiberberine are at nanomolar level, which are comparable to a widely used drug of galantamine. Pharmacophore modeling shows that the positive ionizable group and aromatic rings are important substructures for AchE inhibition. Molecular docking further shows that pi-cation interaction and pi-pi stacking are critical for compounds to maintain nanomolar IC50 values. The structure-activity information is helpful for drug design and structure optimization. This work also expanded the traditional understanding of "stem is the medicinal part of Mahonia bealei and Mahonia fortunei". Actually, all parts except the leaf of Mahonia bealei exhibited potent AchE-inhibitory activity. This study provides not only a strategy to discover lead chemome for modern drug development, but also a reference for the application of different parts of medicinal plants.


Assuntos
Medicamentos de Ervas Chinesas/química , Chumbo , Mahonia/química , Chumbo/análise , Chumbo/química , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Folhas de Planta/química
19.
Carbohydr Polym ; 271: 118402, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364548

RESUMO

Conformation of chitosan in acidic aqueous solutions is strongly influenced by ionic strength, but the conventional employed size exclusion chromatography is limited to high ionic strength. Here we show that conformation of chitosan in acetate buffer down to millimolar ionic strength can be studied via asymmetric flow field-flow fractionation (AF4), where the separation is governed by the diffusion properties of the chitosan molecules and assisted by the electrostatic repulsion of the polyelectrolyte from the channel membrane. The size of chitosan decreases with ionic strength due to increasing screening of the polyelectrolyte effect. The persistence length of chitosan in the solutions, obtained by fitting the conformation plot by the wormlike chain model, decreases linearly with the Debye screening length from 44.5 nm at a salt concentration of 1.25 mM dominated by the electrostatic contribution to 8.6 nm in 800 mM acetate buffer close to its intrinsic persistence length of 7.7 nm.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 203: 408-414, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29894953

RESUMO

Three mononuclear Cu(I) complexes, namely, [Cu(2-PBO)(PPh3)2]·ClO4·2CH2Cl2 (1), [Cu(3-PBO)(PPh3)2(ClO4)]·CH2Cl2 (2) and [Cu(PBM)(PPh3)2]·ClO4 (3) (2-PBO = 2-(2'-Pyridyl)benzoxazole, 3-PBO = 2-(3'-Pyridyl)benzoxazole, PBM = 2-(2'-Pyridyl)benzimidazole, PPh3 = triphenylphosphine) have been synthesized and characterized by elemental analyses, IR, 1H NMR, 13C NMR, X-ray single crystal diffraction and thermal analysis. Photoluminescent investigation shows that complexes 1-3 exhibit distinct tunable light green (512 nm)-to-yellow (557 nm) photoluminescence by varying the N-heterocyclic ligands. Three complexes show intense 2-PBO-based yellow, 3-PBO-based light green and intense PBM-based bright green luminescence upon irradiation with a standard UV lamp (λex = 254 nm) at room temperature. Moreover, the electrochemical properties of 1-3 have been investigated by cyclic voltammetry. The results suggest the frontier molecular orbits and the HOMO-LUMO energy gaps of these cuprous complexes are effectively adjusted through the introduction of different N-heterocyclic ligands, thus achieving the selective luminescence of the cuprous complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA