Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(23): 24200-24217, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991848

RESUMO

Most existing vaccines, delivered by intramuscular injection (IM), are typically associated with stringent storage requirements under cold-chain distribution and professional administration by medical personnel and often result in the induction of weak mucosal immunity. In this context, we reported a microneedle (MN) patch to deliver chitosan oligosaccharide (COS)-encapsulated DNA vaccines (DNA@COS) encoding spike and nucleocapsid proteins of SARS-CoV-2 as a vaccination technology. Compared with IM immunization, intradermal administration via the MN-mediated DNA vaccine effectively induces a comparable level of neutralizing antibody against SARS-CoV-2 variants. Surprisingly, we found that MN-mediated intradermal immunization elicited superior systemic and mucosal T cell immunity with enhanced magnitude, polyfunctionality, and persistence. Importantly, the DNA@COS nanoparticle vaccine loaded in an MN patch can be stored at room temperature for at least 1 month without a significant decrease of its immunogenicity. Mechanically, our strategy enhanced dendritic cell maturation and antiviral immunity by activating the cGAS-STING-mediated IFN signaling pathway. In conclusion, this work provides valuable insights for the rapid development of an easy-to-administer and thermostable technology for mucosal vaccines.


Assuntos
Quitosana , Nanopartículas , Vacinas , Imunidade nas Mucosas , Oligossacarídeos , Anticorpos Antivirais
2.
Front Immunol ; 14: 1195533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654488

RESUMO

Background: Pre-existing cross-reactive immunity among different coronaviruses, also termed immune imprinting, may have a comprehensive impact on subsequent SARS-CoV-2 infection and COVID-19 vaccination effectiveness. Here, we aim to explore the interplay between pre-existing seasonal coronaviruses (sCoVs) antibodies and the humoral immunity induced by COVID-19 vaccination. Methods: We first collected serum samples from healthy donors prior to COVID-19 pandemic and individuals who had received COVID-19 vaccination post-pandemic in China, and the levels of IgG antibodies against sCoVs and SARS-CoV-2 were detected by ELISA. Wilcoxon rank sum test and chi-square test were used to compare the difference in magnitude and seropositivity rate between two groups. Then, we recruited a longitudinal cohort to collect serum samples before and after COVID-19 vaccination. The levels of IgG antibodies against SARS-CoV-2 S, S1, S2 and N antigen were monitored. Association between pre-existing sCoVs antibody and COVID-19 vaccination-induced antibodies were analyzed by Spearman rank correlation. Results: 96.0% samples (339/353) showed the presence of IgG antibodies against at least one subtype of sCoVs. 229E and OC43 exhibited the highest seroprevalence rates at 78.5% and 72.0%, respectively, followed by NL63 (60.9%) and HKU1 (52.4%). The levels of IgG antibodies against two ß coronaviruses (OC43 and HKU1) were significantly higher in these donors who had inoculated with COVID-19 vaccines compared to pre-pandemic healthy donors. However, we found that COVID-19 vaccine-induced antibody levels were not significant different between two groups with high levelor low level of pre-existing sCoVs antibody among the longitudinal cohort. Conclusion: We found a high prevalence of antibodies against sCoVs in Chinese population. The immune imprinting by sCoVs could be reactivated by COVID-19 vaccination, but it did not appear to be a major factor affecting the immunogenicity of COVID-19 vaccine. These findings will provide insights into understanding the impact of immune imprinting on subsequent multiple shots of COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Pandemias , Estações do Ano , Estudos Soroepidemiológicos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Imunoglobulina G
3.
Viruses ; 15(6)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37376617

RESUMO

The frequent SARS-CoV-2 variants have caused a continual challenge, weakening the effectiveness of current vaccines, and thus it is of great importance to induce robust and conserved T cellular immunity for developing the next-generation vaccine against SARS-CoV-2 variants. In this study, we proposed a conception of enhancing the SARS-CoV-2 specific T cell functionality by fusing autophagosome-associated LC3b protein to the nucleocapsid (N) (N-LC3b). When compared to N protein alone, the N-LC3b protein was more effectively targeted to the autophagosome/lysosome/MHC II compartment signal pathway and thus elicited stronger CD4+ and CD8+ T cell immune responses in mice. Importantly, the frequency of N-specific polyfunctional CD4+ and CD8+ T cells, which can simultaneously secrete multiple cytokines (IFN-γ+/IL-2+/TNF-α+), in the N-LC3b group was significantly higher than that in the N alone group. Moreover, there was a significantly improved T cell proliferation, especially for CD8+ T cells in the N-LC3b group. In addition, the N-LC3b also induced a robust humoral immune response, characterized by the Th1-biased IgG2a subclass antibodies against the SARS-CoV-2 N protein. Overall, these findings demonstrated that our strategy could effectively induce a potential SARS-CoV-2 specific T cellular immunity with enhanced magnitude, polyfunctionality, and proliferation, and thus provided insights to develop a promising strategy for the design of a novel universal vaccine against SARS-CoV-2 variants and other emerging infectious diseases.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2 , Linfócitos T CD4-Positivos , Vacinas contra COVID-19/metabolismo , COVID-19/metabolismo , Autofagia , Transdução de Sinais , Anticorpos Antivirais
4.
Hum Vaccin Immunother ; 19(1): 2171233, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36785935

RESUMO

The immune escape mutations of SARS-CoV-2 variants emerged frequently, posing a new challenge to weaken the protective efficacy of current vaccines. Thus, the development of novel SARS-CoV-2 vaccines is of great significance for future epidemic prevention and control. We herein reported constructing the attenuated Mycobacterium smegmatis (M. smegmatis) as a bacterial surface display system to carry the spike (S) and nucleocapsid (N) of SARS-CoV-2. To mimic the native localization on the surface of viral particles, the S or N antigen was fused with truncated PE_PGRS33 protein, which is a transportation component onto the cell wall of Mycobacterium tuberculosis (M.tb). The sub-cellular fraction analysis demonstrated that S or N protein was exactly expressed onto the surface (cell wall) of the recombinant M. smegmatis. After the immunization of the M. smegmatis-based COVID-19 vaccine candidate in mice, S or N antigen-specific T cell immune responses were effectively elicited, and the subsets of central memory CD4+ T cells and CD8+ T cells were significantly induced. Further analysis showed that there were some potential cross-reactive CTL epitopes between SARS-CoV-2 and M.smegmatis. Overall, our data provided insights that M. smegmatis-based bacterial surface display system could be a suitable vector for developing T cell-based vaccines against SARS-CoV-2 and other infectious diseases.


Assuntos
COVID-19 , Mycobacterium smegmatis , Camundongos , Humanos , Animais , Mycobacterium smegmatis/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
5.
PLoS Pathog ; 18(3): e1010366, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35235615

RESUMO

Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is well known to play a critical function in cancer, autoimmune and neurodegenerative diseases. However, its role in host-pathogen interactions has not been characterized yet. Herein, we identified that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme in the KP, and quinolinic acid (QUIN), a key enzymatic product of KMO enzyme, exerted a novel antiviral function against a broad range of viruses. Mechanistically, QUIN induced the production of type I interferon (IFN-I) via activating the N-methyl-d-aspartate receptor (NMDAR) and Ca2+ influx to activate Calcium/calmodulin-dependent protein kinase II (CaMKII)/interferon regulatory factor 3 (IRF3). Importantly, QUIN treatment effectively inhibited viral infections and alleviated disease progression in mice. Furthermore, kmo-/- mice were vulnerable to pathogenic viral challenge with severe clinical symptoms. Collectively, our results demonstrated that KMO and its enzymatic product QUIN were potential therapeutics against emerging pathogenic viruses.


Assuntos
Quinurenina 3-Mono-Oxigenase , Viroses , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Camundongos , Ácido Quinolínico/metabolismo , Ácido Quinolínico/farmacologia , Viroses/tratamento farmacológico
6.
J Virol ; 96(3): e0178521, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34818070

RESUMO

The persistence of cells latently infected with HIV-1, named the latent reservoir, is the major barrier to HIV-1 eradication, and the formation and maintenance of the latent reservoir might be exacerbated by activation of the immunoinhibitory pathway and dysfunction of CD8+ T cells during HIV-1 infection. Our previous findings demonstrated that prophylactic vaccination combined with PD-1 blockade generated distinct immune response profiles and conferred effective control of highly pathogenic SIVmac239 infection in rhesus macaques. However, to our surprise, herein we found that a therapeutic vaccination in combination with PD-1 blockade resulted in activation of the viral reservoir, faster viral rebound after treatment interruption, accelerated AIDS progression, and, ultimately, death in chronically SIV-infected macaques after antiretroviral therapy (ART) interruption. Our study further demonstrated that the SIV provirus was preferentially enriched in PD-1+CD4+ T cells due to their susceptibility to viral entry, potent proliferative ability, and inability to perform viral transcription. In addition, the viral latency was effectively reactivated upon PD-1 blockade. Together, these results suggest that PD-1 blockade may be a double-edged sword for HIV-1 immunotherapy and provide important insight toward the rational design of immunotherapy strategies for an HIV-1 cure. IMPORTANCE As it is one of the most challenging public health problems, there are no clinically effective cure strategies against HIV-1 infection. We demonstrated that prophylactic vaccination combined with PD-1 blockade generated distinct immune response profiles and conferred better control of highly pathogenic SIVmac239 infection in rhesus macaques. In the present study, to our surprise, PD-1 blockade during therapeutic vaccination accelerated the reactivation of latent reservoir and AIDS progression in chronically SIV-infected macaques after ART interruption. Our study further demonstrated that the latent SIV provirus was preferentially enriched in PD-1+CD4+ T cells because of its susceptibility to viral entry, inhibition of SIV transcription, and potent ability of proliferation, and the viral latency was effectively reactivated by PD-1 blockade. Therefore, PD-1 blockade might be a double-edged sword for AIDS therapy. These findings provoke interest in further exploring novel treatments against HIV-1 infection and other emerging infectious diseases.


Assuntos
Receptor de Morte Celular Programada 1/antagonistas & inibidores , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Animais , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Biópsia , Biologia Computacional , Progressão da Doença , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , Carga Viral , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
Dev Comp Immunol ; 124: 104180, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34171368

RESUMO

Calmodulin (CaM) is a highly conserved second messenger protein transducing calcium signals by binding and modulating intracellular calcium ions (Ca2+), and involves in the Ca2+-dependent physical processes including host defense in vertebrates. In the present study, a CaM homologue (designated as CgCaM) was identified from Pacific oyster Crassostrea gigas. The open reading frame of CgCaM cDNA was of 471 bp encoding a polypeptide of 156 amino acid residues. There were four EFh domains predicted in CgCaM, which shared high homologies with those in CaMs from oyster C. virginica and other invertebrates. The mRNA transcripts of CgCaM were constitutively expressed in all the tested tissues including labellum, mantle, gonad, gills, adductor muscle, haemocytes and hepatopancreas, with the highest expression level in haemocytes. The mRNA expression level of CgCaM in haemocytes decreased significantly (0.31-fold of that in blank, p < 0.05) at 3 h after LPS stimulation, while the intracellular Ca2+ (1.57-fold of that in blank, p < 0.05) and the mRNA expression of cytokine CgIL17-1 (4.87-fold of that in blank, p < 0.05) both increased in haemocytes. Meanwhile, an oyster miRNA scaffold659_26519 was identified, and it was proved to target the 3'-untranslated regions (3'-UTR) of CgCaM mRNA by luciferase reporter assay. The expression of scaffold659_26519 increased significantly at 3 h (43.523-fold of that of blank, p < 0.05) and 6 h (55.91-fold of that of blank, p < 0.05) after LPS stimulation. When the expression of scaffold659_26519 was inhibited by transfection with its inhibitor in vitro, the expression of CgIL17-1 declined significantly to 0.58-fold of that in LPS stimulation group. These findings indicated that the miRNA scaffold659_26519 targeted CaM was involved in the early inflammatory response of oyster immunity, and provided a new evidence for CaM-mediated immune mechanism in molluscs.


Assuntos
Calmodulina/genética , Crassostrea/imunologia , Interleucina-17/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Animais , Cálcio/imunologia , Calmodulina/imunologia , Crassostrea/genética , Expressão Gênica/imunologia , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Interleucina-17/imunologia , Lipopolissacarídeos/imunologia , MicroRNAs/imunologia , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Distribuição Tecidual/imunologia
8.
Fish Shellfish Immunol ; 99: 442-451, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32084540

RESUMO

The homeostasis of immune cells during immune response is vital for hosts to defend against invaders. Activating transcription factor 6 (ATF6) is an important transcription factor in the unfolded protein response (UPR) to maintaining cellular homeostasis. In the present study, one ATF6 homologue was identified from Pacific oyster Crassostrea gigas (designated as CgATF6ß). The full length cDNA of CgATF6ß was of 2645 bp with a 1596 bp open reading frame (ORF) encoding a polypeptide of 531 amino acids. The deduced amino acid sequence of CgATF6ß was predicted to contain a transmembrane region, a conserved basic leucine zipper (bZIP) domain, a site 1 protease cleavage site, a site 2 protease cleavage site, and a Golgi localization signal. CgATF6ß mRNA was constitutively expressed in hemocytes, gill, mantle, gonad, hepatopancreas and labial palp, with a slightly higher expression level in muscle (2.45-fold of that in gill, p < 0.05). After oysters were challenged with Vibrio splendidus, the mRNA expression levels of CgATF6ß in hemocytes were significantly up-regulated at 3 h (2.68-fold of that in seawater group, p < 0.01) and peaked at 12 h (3.14-fold of that in seawater group, p < 0.01). The endogenic CgATF6ß protein was mainly located in the cytoplasm of oyster hemocytes, and it was significantly transported into the nuclei of hemocytes at 1.5 h after the challenge with V. splendidus. After an injection with CgATF6ß dsRNA, the mRNA expression of CgATF6ß was knocked down to 0.26-fold of that in dsGFP group (p < 0.01). In CgATF6ß dsRNA-injected oysters, the mRNA expressions of glucose-regulated protein 78 (GRP78), calnexin (CNX) and anti-apoptotic B-cell lymphoma-2 (Bcl-2) in hemocytes were significantly decreased at 12 h after V. splendidus challenge, which were 0.65-fold (p < 0.01), 0.54-fold (p < 0.01) and 0.17-fold (p < 0.01) of that in dsGFP-injected oysters, while the apoptotic rate of hemocytes was significantly up-regulated (1.97-fold of that in dsGFP group, p < 0.05). Collectively, these results suggested that CgATF6ß was involved in apoptosis inhibition of oyster hemocytes upon V. splendidus challenge by regulating the expression of CgGRP78, CgCNX and CgBcl-2.


Assuntos
Fator 6 Ativador da Transcrição/imunologia , Apoptose , Crassostrea/imunologia , Hemócitos/imunologia , Vibrioses/veterinária , Fator 6 Ativador da Transcrição/genética , Animais , Clonagem Molecular , Crassostrea/genética , DNA Complementar/genética , Regulação da Expressão Gênica , Hemócitos/citologia , Homeostase , Imunidade Inata , Fases de Leitura Aberta , RNA Mensageiro/genética , Resposta a Proteínas não Dobradas , Vibrio , Vibrioses/imunologia
9.
Front Physiol ; 11: 530435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424616

RESUMO

Engrailed is a transcription factor required in numerous species for important developmental steps such as neurogenesis, segment formation, preblastoderm organization, and compartment formation. Recent study has proved that engrailed is also a key gene related to shell formation in marine bivalves. In the present study, the expression pattern of an engrailed gene (Cgengrailed-1) in Pacific oyster Crassostrea gigas under CO2-driven acidification was investigated to understand its possible role in the regulation of shell formation and adaptation to ocean acidification (OA). The open reading frame (ORF) of Cgengrailed-1 was obtained, which was of 690 bp encoding a polypeptide of 229 amino acids with a HOX domain. Phylogenetic analysis indicated that the deduced amino acid sequence of Cgengrailed-1 shared high homology with other engraileds from Drosophila melanogaster, Mizuhopecten yessoensi, and Crassostrea virginica. The mRNA transcripts of Cgengrailed-1 were constitutively expressed in various tissues with the highest expression levels detected in labial palp and mantle, which were 86.83-fold (p < 0.05) and 75.87-fold (p < 0.05) higher than that in hepatopancreas. The mRNA expression of Cgengrailed-1 in mantle decreased dramatically after moderate (pH 7.8) and severe (pH 7.4) acidification treatment (0.75- and 0.15-fold of that in control group, p < 0.05). The results of immunofluorescence assay demonstrated that the expression level of Cgengrailed-1 in the middle fold of mantle increased significantly upon moderate and severe acidification treatment. Moreover, after the oyster larvae received acidification treatment at trochophore stage, the mRNA expression levels of Cgengrailed-1 increased significantly in D-shape larvae stages, which was 3.11- (pH 7.8) and 4.39-fold (pH 7.4) of that in control group (p < 0.05). The whole-mount immunofluorescence assay showed that Cgengrailed-1 was mainly expressed on the margin of shell gland, and the periostracum in trochophore, early D-shape larvae and D-shape larvae in both control and acidification treatment groups, and the intensity of positive signals in early D-shape larvae and D-shape larvae increased dramatically under acidification treatment. These results collectively suggested that the expression of Cgengrailed-1 could be triggered by CO2-driven acidification treatment, which might contribute to induce the initial shell formation in oyster larvae and the formation of periostracum in adult oyster to adapt to the acidifying marine environment.

10.
Fish Shellfish Immunol ; 95: 584-594, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31678182

RESUMO

Dicer, as a member of ribonuclease III family, functions in RNA interference (RNAi) pathway to direct sequence-specific degradation of cognate mRNA. It plays important roles in antiviral immunity and production of microRNAs. In the present study, a Dicer gene was identified from oyster Crassostrea gigas, and its open reading frame (ORF) encoded a polypeptide (designed as CgDicer) of 1873 amino acids containing two conserved ribonuclease III domains (RIBOc) and a double-stranded RNA-binding motif (DSRM). The deduced amino acid sequence of CgDicer shared identities ranging from 18.5% to 46.6% with that of other identified Dicers. The mRNA transcripts of CgDicer were detectable in all the examined tissues of adult oysters, with the highest expression in hemocytes (11.21 ±â€¯1.64 fold of that in mantle, p < 0.05). The mRNA expression level of CgDicer in hemocytes was significantly up-regulated (36.70 ±â€¯11.10 fold, p < 0.01) after the oysters were treated with double-stranded RNA (dsRNA). In the primarily cultured oyster hemocytes, the mRNA transcripts of CgDicer were significantly induced at 12 h after the stimulation with poly(I:C), which were 2.04-fold (p < 0.05) higher than that in control group. Immunocytochemistry assay revealed that CgDicer proteins were mainly distributed in the cytoplasm of hemocytes. The two most important functional domains of CgDicer, DSRM and RIBOc, were recombinant expressed in Escherichia coli transetta (DE3), and the recombinant DSRM protein displayed significantly binding activity to dsRNA and poly(I:C) in vitro, while the recombinant RIBOc protein exhibited significantly dsRNase activity to cleave dsRNA in vitro. These results collectively suggested that CgDicer functioned as either an intracellular recognition molecule to bind dsRNA or an effector with ribonuclease activity, which might play a crucial role in anti-viral immunity of oyster.


Assuntos
Crassostrea/enzimologia , Crassostrea/imunologia , Imunidade Inata , Ribonuclease III/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Crassostrea/genética , Perfilação da Expressão Gênica , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Filogenia , Poli I-C/farmacologia , RNA Mensageiro , Ribonuclease III/genética , Alinhamento de Sequência , Viroses/imunologia , Viroses/veterinária
11.
Fish Shellfish Immunol ; 93: 1084-1092, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31449980

RESUMO

As a family of negatively feedback regulating factors, the suppressor of cytokine signaling (SOCS) can depress cytokine signal transduction, and eventually modulate growth, development, differentiation, and immune response. In the present study, a SOCS homologue (designated as CgSOCS6) was identified from oyster Crassostrea gigas. The open reading frame of CgSOCS6 cDNA was of 1167 bp encoding a peptide of 388 amino acid residues with a central Src homology 2 (SH2) domain, a conserved C-terminal SOCS box, and a nucleus localization sequence (NLS) in its N-terminus. The deduced amino acid sequence of CgSOCS6 shared 37.9-45.5% similarity with other SOCS6/7 family members. In the unrooted phylogenetic tree, CgSOCS6 was clustered with EsSOCS6 from Chinese mitten crab Eriocheir sinensis and assigned into the SOCS6/7 group. The mRNA transcripts of CgSOCS6 were constitutively distributed in all the tested tissues, with the highest level in hemocytes. After lipopolysaccharide (LPS) stimulation, the mRNA expression of CgSOCS6 in hemocytes was significantly up-regulated to the highest level at 6 h (8.48-fold compared to the control group, p < 0.01), and then kept at a relatively higher level from 12 h to 72 h. CgSOCS6 protein could be translocated into the hemocyte nucleus after LPS stimulation. The mRNA expressions of interleukin 17-4 (CgIL17-4), CgIL17-5, and defensin (CgDefh1) in the hemocytes of CgSOCS6-knockdown oysters increased significantly (2.55-fold, 2.68-fold, 4.68-fold of that in EGFP-RNAi oysters, p < 0.05, p < 0.05, p < 0.001, respectively) after LPS stimulation. These findings suggested that CgSOCS6 was involved in the oyster immune response by regulating the expressions of CgIL17-4, CgIL17-5, and CgDefh1.


Assuntos
Crassostrea/genética , Crassostrea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/imunologia , Sequência de Aminoácidos , Animais , Defensinas/genética , Defensinas/imunologia , Perfilação da Expressão Gênica , Interleucina-17/genética , Interleucina-17/imunologia , Lipopolissacarídeos/farmacologia , Filogenia , Alinhamento de Sequência , Proteínas Supressoras da Sinalização de Citocina/química
12.
Fish Shellfish Immunol ; 91: 325-332, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31128297

RESUMO

Autophagy, a highly conserved intracellular degradation system, is involved in numerous processes in vertebrate and invertebrate, such as cell survival, ageing, and immune responses. However, the detailed molecular mechanism of autophagy and its immune regulatory role in bivalves are still not well understood. In the present study, an autophagy-related protein ATG10 (designated as CgATG10) was identified from Pacific oyster Crassostrea gigas. The open reading frame of CgATG10 cDNA was of 621 bp, encoding a polypeptide of 206 amino acid residues with an Autophagy_act_C domain (from 96 to 123 amino acid), which shared high homology with that from C. virginica and Octopus bimaculoides. The mRNA transcripts of CgATG10 were widely expressed in all the tested tissues including mantle, gonad, gills, hemocytes and hepatopancreas, with the highest expression level in mantle. After the stimulation with poly (I:C), the mRNA expression level of CgATG10 in the mantle of oysters was significantly up-regulated (4.92-fold of that in Blank group, p < 0.05), and the LC3-conversion from LC3-I to LC3-II (LC3-II/LC3-I) also increased. After an additional injection of dsRNA to knock-down the expression of CgATG10 (0.33-fold and 0.10-fold compared respectively with Blank group and dsGFP group, p < 0.05), the downstream conversion of CgLC3 was inhibited significantly compared with that of the control dsGFP group, while the expression level of autophagy-initiator CgBeclin1 did not change significantly. In addition, the mRNA transcripts of interferon regulatory factor CgIRF-1 increased significantly in CgATG10-knockdown oysters at 12 h post poly (I:C) stimulation. All the results indicated that CgATG10 might participate in the immune response against poly (I:C) by regulating autophagosome formation and interferon system in oysters.


Assuntos
Autofagossomos/imunologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/imunologia , Crassostrea/genética , Crassostrea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Proteínas Relacionadas à Autofagia/química , Perfilação da Expressão Gênica , Interferons/genética , Interferons/metabolismo , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência
13.
Fish Shellfish Immunol ; 89: 237-247, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30936048

RESUMO

Lectins are carbohydrate-binding proteins with lectin domains, which are extensively studied for their numerous roles in biological recognition. However, the lectin domain containing proteins (LDCPs) chimerized with other non-lectin domains have not received sufficient attention. In the present study, a genome-wide survey of LDCPs in oyster Crassostrea gigas was conducted, and an expansive 640 LDCPs derived from ten lectin domains were identified and functionally explored. In these LDCPs, a total of 282 kinds of domains were predicted, and 90% of the LDCPs contained more than one kind of domain. The lectin domains were frequently fused with non-lectin domains, such as epidermal growth factor domain and peptidase related domains, which supplied LDCPs with more diversity in structures and functions. The C-type lectin domains were the most abundant domains in LDCPs, and they were largely co-existed with non-lectin domains of complement activation-related domains (such as CUB domain and PAN-1 domain) but relative independence with other lectin domains. Furthermore, the C-type lectin domain containing proteins (CTLPs) found to mainly act as pattern immune recognition receptors and were highly expressed in mucosal tissues (digestive gland, male gonad and labial palp) to provide mucosal immune protections. The Concanavalin A-like lectin domains were the second richest domains in LDCPs, and they were mostly constructed into chimeric proteins with epidermal growth factor domain and peptidase related domains. The Concanavalin A-like lectin domain containing proteins (CALPs) were significantly enriched with peptidase activities and mainly expressed in digestive tissues. All the results suggested the mucosal immunity and digestive functions of oyster LDCPs, which provided a fresh idea about the functions of invertebrate lectin family.


Assuntos
Crassostrea/fisiologia , Digestão/genética , Imunidade nas Mucosas/genética , Lectinas/genética , Lectinas/imunologia , Domínios Proteicos/imunologia , Animais , Crassostrea/genética , Crassostrea/imunologia , Genoma , Moléculas com Motivos Associados a Patógenos/metabolismo
14.
Fish Shellfish Immunol ; 84: 920-926, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30385248

RESUMO

The globular C1q domain containing (C1qDC) proteins are a family of versatile pattern recognition receptors (PRRs) to bind various ligands by their globular C1q (gC1q) domain. In the present study, a novel globular C1qDC (CgC1qDC-7) was characterized from Pacific oyster Crassostrea gigas. The open reading frame of CgC1qDC-7 was of 555 bp, encoding a polypeptide of 185 amino acids. Phylogenetic analysis indicated that CgC1qDC-7 shared high homology with C1qDCs from Crassostrea virginica, Mytilus galloprovincialis, and Mizuhopecten yessoensis. The mRNA transcripts of CgC1qDC-7 were widely expressed in all the tested tissues including mantle, gonad, gills, adductor muscle, hemocytes, hepatopancreas and labial palps, with the highest expression level in hemocytes and gills. The recombinant protein of CgC1qDC-7 (rCgC1qDC-7) exhibited binding activity towards Gram-negative bacteria (Vibrio splendidus, V. anguillarum, Escherichia coli, V. alginolyticus, and Aeromonas hydrophila), Gram-positive bacteria (Micrococcus luteus and Staphylococcus aureus) and fungi (Pichia pastoris and Yarrowia lipolytica), and displayed strongest binding affinity towards Gram-negative bacteria V. splendidus and V. anguillarum. It also exhibited affinity to vital pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), peptidoglycan (PGN), mannan (MAN) and Poly (I:C) with high affinity towards LPS and PGN, and low affinity to MAN and Poly (I:C). These results collectively indicated that CgC1qDC-7 was a novel PRR in C. gigas with high binding affinity towards LPS and PGN as well as Gram-negative bacteria.


Assuntos
Complemento C1q/genética , Complemento C1q/imunologia , Crassostrea/genética , Crassostrea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Complemento C1q/química , Complemento C1q/metabolismo , Perfilação da Expressão Gênica , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Filogenia , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Saccharomycetales/fisiologia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA