Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(7): 4255-4268, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37452568

RESUMO

The biocompatibility and biodegradation of iron (Fe) make it a suitable candidate for developing biodegradable metallic implants. However, the degradation rate of Fe in a physiological environment is extremely slow and needs to be enhanced to a rate compatible with tissue growth. Incorporating noble metals improves the Fe degradation rate by forming galvanic couples. This study incorporated gold (Au) into Fe at very low concentrations of 1.25 and 2.37 µg/g to improve the degradation rate. The electrochemical corrosion test of the samples revealed that the Au-containing samples showed a four-time and nine-time faster degradation rate than pure Fe. Furthermore, the immersion test and long-term electrochemical impedance spectroscopy conducted in simulated body fluid (SBF) revealed that the Au-incorporated samples exhibited increased bioactivity and degraded faster than pure Fe. Integrating nanogold into a Fe matrix increased the in situ formation of hydroxyapatite on the sample's surface and did not cause toxicity to L929-murine fibroblast cells. It is suggested that Fe-Au composites with low concentrations of Au can be used to tailor the biodegradation rate and promote the biomineralization of Fe-based implants in the physiological environment.


Assuntos
Materiais Biocompatíveis , Ferro , Animais , Camundongos , Ferro/química , Teste de Materiais , Implantes Absorvíveis , Ouro/química , Biomineralização
2.
Prog Biomater ; 11(2): 163-191, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35583848

RESUMO

Biodegradable metals have gained vast attention as befitting candidates for developing degradable metallic implants. Such implants are primarily employed for temporary applications and are expected to degrade or resorbed after the tissue is healed. Fe-based materials have generated considerable interest as one of the possible biodegradable metals. Like other biometals such as Mg and Zn, Fe exhibits good biocompatibility and biodegradability. The versatility in the mechanical behaviour of Fe-based materials makes them a better choice for load-bearing applications. However, the very low degradation rate of Fe in the physiological environment needs to be improved to make it compatible with tissue growth. Several studies on tailoring the degradation behaviour of Fe in the human body are already reported. Majority of these works include studies on the effect of manufacturing and processing techniques on biocompatibility and biodegradability. This article focuses on a comprehensive review and analysis of the various manufacturing and processing techniques so far reported for developing biodegradable iron-based orthopaedic implants. The current status of research in the field is neatly presented, and a summary of the works is included in the article for the benefit of researchers in the field to contextualise their research and effectively find the lacunae in the existing scholarship.

3.
Mater Sci Eng C Mater Biol Appl ; 65: 43-50, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27157726

RESUMO

AZ31 magnesium alloy was coated with polycaprolactone (PCL) nano-fibrous layer using electrospinning technique so as to control degradation in physiological environment. Before coating, the alloy was treated with HNO3 to have good adhesion between the coating and substrate. To elucidate the role of pre-treatment and coating, samples only with PCL coating as well as HNO3 treatment only were prepared for comparison. Best coating adhesion of 4B grade by ASTM D3359-09 tape test was observed for pre-treated samples. The effect of coating on in vitro degradation and biomineralization was studied using supersaturated simulated body fluid (SBF 5×). The weight loss and corrosion results obtained by immersion test showed that the combination of HNO3 pre-treatment and PCL coating is very effective in controlling the degradation rate and improving bioactivity. Cytotoxicity studies using L6 cells showed that PCL coated sample has better cell adhesion and proliferation compared to uncoated samples. Nano-fibrous PCL coating combined with prior acid treatment seems to be a promising method to tailor degradation rate with enhanced bioactivity of Mg alloys.


Assuntos
Ligas/química , Materiais Revestidos Biocompatíveis/química , Poliésteres/química , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/toxicidade , Corrosão , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Ácido Nítrico/química , Ratos , Espectrometria por Raios X , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA