Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 11(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878232

RESUMO

Among conductive oxide materials, niobium doped titanium dioxide has recently emerged as a stimulating and promising contestant for numerous applications. With carrier concentration tunability, high thermal stability, mechanical and environmental robustness, this is a material-of-choice for infrared plasmonics, which can substitute indium tin oxide (ITO). In this report, to illustrate great advantages of this material, we describe successful fabrication and characterization of niobium doped titanium oxide nanoantenna arrays aiming at surface-enhanced infrared absorption spectroscopy. The niobium doped titanium oxide film was deposited with co-sputtering method. Then the nanopatterned arrays were prepared by electron beam lithography combined with plasma etching and oxygen plasma ashing processes. The relative transmittance of the nanostrip and nanodisk antenna arrays was evaluated with Fourier transform infrared spectroscopy. Polarization dependence of surface plasmon resonances on incident light was examined confirming good agreements with calculations. Simulated spectra also present red-shift as length, width or diameter of the nanostructures increase, as predicted by classical antenna theory.

2.
Data Brief ; 12: 113-122, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28413816

RESUMO

This article is related to http://dx.doi.org/10.1016/j.bbamem.2017.01.005 (Ø. Strømland, Ø.S. Handegård, M.L. Govasli, H. Wen, Ø. Halskau, 2017) [1]. In protein and polypeptide-membrane interaction studies, negatively charged lipids are often used as they are a known driver for membrane interaction. When using fluorescence spectroscopy and CD as indicators of polypeptide binding and conformational change, respectively, the effect of zwitterionic lipids only should be documented. The present data documents several aspects of how two engineered polypeptides (A-Cage-C and A-Lnk-C) derived from the membrane associating protein alpha-Lactalbumin affects and are affected by the presence of zwitterionic bilayers in the form of vesicles. We here document the behavior or the Cage and Lnk segments with respect to membrane interaction and their residual fold, using intrinsic tryptophan fluorescence assays. This data description also documents the coverage of solid-supported bilayers prepared by spin-coating mica using binary lipid mixes, a necessary step to ensure that AFM is performed on areas that are covered by lipid bilayers when performing experiments. Uncovered patches are detectable by both force curve measurements and height measurements. We tested naked mica׳s ability to cause aggregation as seen by AFM, and found this to be low compared to preparations containing negatively charged lipids. Work with lipids also carries the risk of chemical degradation taking place during vesicles preparation or other handling of the lipids. We therefor use 31P NMR to quantify the head-group content of commonly used commercial extracts before and after a standard protocol for vesicle production is applied.

3.
Biochim Biophys Acta Biomembr ; 1859(5): 1029-1039, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28069414

RESUMO

Helix A and -C of α-lactalbumin, a loosely folded amphitropic protein, perturb lipid monolayers by the formation of amyloid pore-like structures. To investigate whether these helices are able to disrupt fully formed bilayers, we designed peptides comprised of Helix A and -C, and investigated their membrane-perturbing properties. The peptides, designated A-Cage-C and A-Lnk-C, were prepared with tryptophan sites in the helical and the spacer segments in order to monitor which part were involved in membrane association under given conditions. The peptides associate with and disrupt negatively charged bilayers in a pH-dependent manner and α-helical tendencies increased upon membrane association. Both helices and the spacer segment were involved in membrane binding in the case of A-Lnk-C, and there are indications that the two helixes act in synergy to affect the membrane. However, the helices and the spacer segment could not intercalate when present as A-Cage-C at neutral conditions. At acidic pH, both helices could intercalate, but not the central spacer segment. AFM performed on bilayers under aqueous conditions revealed oligomers formed by the peptides. The presence of bilayers and acidic pHs were both drivers for the formation of these, suggestive of models for peptide oligomerization where segments of the peptide are stacked in an electrostatically favorable manner by the surface. Of the two peptides, A-Lnk-C was the more prolific oligomerizer, and also formed amyloid-fibril like structures at acidic pH and elevated concentrations. Our results suggest the peptides perturb membranes not through pore-like structures, but possibly by a thinning mechanism.


Assuntos
Lactalbumina/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Peptídeos/química , Multimerização Proteica , Concentração de Íons de Hidrogênio , Conformação Proteica em alfa-Hélice
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA