Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 29(4): 163, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38682179

RESUMO

BACKGROUND: Glucocorticoids (GCs) are commonly used as the primary chemotherapy for lymphoid malignancies, including acute lymphoblastic leukemia (ALL). However, the development of GC resistance limits their prolonged use. METHODS: In this study, we investigated the potential of a newly synthesized indole derivative called LWX-473, in combination with the classic GC Dexamethasone (DEX), to enhance the responsiveness of Jurkat cells to GC treatment. RESULTS: Our findings demonstrate that LWX-473 alone or in combination with DEX significantly improves GC-induced cell apoptosis and arrests the cell cycle in the G1 phase. Notably, the combination of LWX-473 and DEX exhibits superior efficacy in killing Jurkat cells compared to LWX-473 alone. Importantly, this compound demonstrates reduced toxicity towards normal cells. CONCLUSIONS: Our study reveals that LWX-473 has the ability to restore the sensitivity of Jurkat cells to DEX by modulating the mitochondrial membrane potential, activating the expression of DEX-liganded glucocorticoid receptor (GR), and inhibiting key molecules in the JAK/STAT signaling pathway. These findings suggest that LWX-473 could be a potential therapeutic agent for overcoming GC resistance in lymphoid malignancies.


Assuntos
Apoptose , Dexametasona , Resistencia a Medicamentos Antineoplásicos , Glucocorticoides , Indóis , Potencial da Membrana Mitocondrial , Receptores de Glucocorticoides , Humanos , Células Jurkat , Apoptose/efeitos dos fármacos , Dexametasona/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glucocorticoides/farmacologia , Indóis/farmacologia , Receptores de Glucocorticoides/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Biomed Pharmacother ; 171: 116179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278023

RESUMO

BACKGROUND: Acute erythroleukemia (AEL) is acute myeloid leukemia characterized by malignant erythroid proliferation. AEL has a low survival rate, which has seriously threatened the health of older adults. Calothrixin B is a carbazole alkaloid isolated from the cyanobacteria Calothrix and exhibits anti-cancer activity. To discover more potential anti-erythroleukemia compounds, we used calothrixin B as the structural skeleton to synthesize a series of new compounds. METHODS: In the cell culture model, we evaluated apoptosis and cell cycle arrest using MTT assay, flow cytometry analysis, JC-1 staining, Hoechst 33258 staining, and Western blot. Additionally, assessing the curative effect in the animal model included observation of the spleen, HE staining, flow cytometry analysis, and detection of serum biochemical indexes. RESULTS: Among the Calothrixin B derivatives, H-107 had the best activity against leukemic cell lines. H-107 significantly inhibited the proliferation of HEL cells with an IC50 value of 3.63 ± 0.33 µM. H-107 induced apoptosis of HEL cells by damaging mitochondria and activating the caspase cascade and arrested HEL cells in the G0/G1 phase. Furthermore, H-107 downregulated the protein levels Ras, p-Raf, p-MEK, p-ERK and c-Myc. Pretreatment with ERK inhibitor (U0126) increased H-107-induced apoptosis. Thus, H-107 inhibited the proliferation of HEL cells by the ERK /Ras/Raf/MEK signal pathways. Interestingly, H-107 promoted erythroid differentiation into the maturation of erythrocytes and effectively activated the immune cells in erythroleukemia mice. CONCLUSION: Overall, our findings suggest that H-107 can potentially be a novel chemotherapy for erythroleukemia.


Assuntos
Alcaloides Indólicos , Leucemia Eritroblástica Aguda , Animais , Camundongos , Sistema de Sinalização das MAP Quinases , Pontos de Checagem do Ciclo Celular , Apoptose , Quinases de Proteína Quinase Ativadas por Mitógeno , Proliferação de Células , Ciclo Celular , Linhagem Celular Tumoral
3.
Biomed Pharmacother ; 141: 111877, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34323693

RESUMO

Leukemia is responsible for a reason of death, globally. Even though there are several treatment regimens available in the clinics against this disease, a perfect chemotherapeutic agent for the same is still under investigation. Natural plant-derived secondary metabolites are used in clinics to treat leukemia for better benefits with reduced side-effects. Likely, several bioactive compounds from Callistemon sp. were reported for their bioactive benefits. Furthermore, acylphloroglucinol derivatives from Callistemon salignus, showed both antimicrobial and cytotoxic activities in various adherent human cancer cell lines. Thus, in the present study, a natural acylphloroglucinol (2,6-dihydroxy-4-methoxyisobutyrophenone, L72) was tested for its antiproliferative efficacy in HEL cells. The MTT and the cell cycle analysis study revealed that L72 treatment can offer antiproliferative effects, both time and dose-dependent manner, causing G2/M cell cycle arrest. The western blot analysis revealed that L72 treatment triggered intrinsic apoptotic machinery and activated p21. Likewise, L72 could downregulate the gene expressions of XIAP, FLT3, IDH2, and SOD2, which was demonstrated by qPCR analysis, thus promoting its antiproliferative action. The L72 could impede STAT3 expression, which was evidenced by insilico autodock analysis and western blot analysis using STAT3 inhibitor, Pimozide. The treatment of transgenic (Flk-1+/egfr+) zebrafish embryos resulted in the STAT3 gene inhibition, proving its anti-angiogenic effect, as well. Thus, the study revealed that L72 could act as an antiproliferative agent, by triggering caspase-dependent intrinsic apoptosis, reducing cell proliferation by attenuating STAT3, and activating an anti-angiogenic pathway via Flk-1inhibition.


Assuntos
Inibidores da Angiogênese/farmacologia , Proliferação de Células/efeitos dos fármacos , Floroglucinol/farmacologia , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Inibidores da Angiogênese/isolamento & purificação , Animais , Animais Geneticamente Modificados , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Floroglucinol/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Estrutura Secundária de Proteína , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA