Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hereditas ; 149(1): 16-23, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22458437

RESUMO

F(2) and BC(1) populations derived from the cross between 02428 / Rathu Heenati were used to investigate small brown planthopper (SBPH) resistance. Using the F(2) population, three QTLs for antixenosis against SBPH were located on chromosomes 2, 5 and 6, and accounted for 30.75% of the phenotypic variance; three QTLs for antibiosis against SBPH were detected on chromosomes 8, 9 and 12. qSBPH5-c explaining 7.21% of phenotypic variance for antibiosis was identified on chromosome 5 using the BC(1) population. A major QTL, qSBPH12-a1, explained about 40% of the phenotypic variance, and a minor QTL, qSBPH4-a, was detected by the SSST method in both the F(2) and BC(1) populations. The QTLs indentified in the present study will be useful for marker assisted selection of SBPH resistance in rice.


Assuntos
Antibiose/genética , Oryza/genética , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Cromossomos de Plantas , Ligação Genética , Hemípteros , Fenótipo , Doenças das Plantas/genética
2.
Breed Sci ; 61(4): 338-46, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23136470

RESUMO

Amylose content (AC) and viscosity profile are primary indices for evaluating eating and cooking qualities of rice grain. Using chromosome segment substitution lines (CSSLs), previous studies identified a QTL cluster of genes for rice eating and cooking quality in the interval R727-G1149 on chromosome 8. In this study we report two QTLs for viscosity parameters, respectively controlling setback viscosity (SBV) and consistency viscosity (CSV), located in the same interval using rapid viscosity analyzer (RVA) profile as an indicator of eating quality. Previously reported QTL for AC was dissected into two components with opposite genetic effects. Of four QTLs, qCSV-8 and qAC-8-2 had stable genetic effects across three and four environments, respectively. qSBV-8, qCSV-8 and qAC-8-1 partly overlapped, but were separated from qAC-8-2. Based on data from an Affymetrix rice GeneChip, two genes related to starch biosynthesis at the qAC-8-2 locus were chosen for further quantitative expression analysis. Both genes showed enhanced expression in sub-CSSLs carrying the target qAC-8-2 allele, but not in sub-CSSLs without the target qAC-8-2 allele, indicating their possible role in rice quality determination. Molecular markers closely linked to the two stable QTL provide the opportunity for marker-assisted selection (MAS) in breeding high quality rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA