RESUMO
Despite the fact that introns mean an energy and time burden for eukaryotic cells, they play an irreplaceable role in the diversification and regulation of protein production. As a common feature of eukaryotic genomes, it has been reported that in protein-coding genes, the longest intron is usually one of the first introns. The goal of our work was to find a possible difference in the biological function of genes that fulfill this common feature compared to genes that do not. Data on the lengths of all introns in genes were extracted from the genomes of six vertebrates (human, mouse, koala, chicken, zebrafish and fugu) and two other model organisms (nematode worm and arabidopsis). We showed that more than 40% of protein-coding genes have the relative position of the longest intron located in the second or third tertile of all introns. Genes divided according to the relative position of the longest intron were found to be significantly increased in different KEGG pathways. Genes with the longest intron in the first tertile predominate in a range of pathways for amino acid and lipid metabolism, various signaling, cell junctions or ABC transporters. Genes with the longest intron in the second or third tertile show increased representation in pathways associated with the formation and function of the spliceosome and ribosomes. In the two groups of genes defined in this way, we further demonstrated the difference in the length of the longest introns and the distribution of their absolute positions. We also pointed out other characteristics, namely the positive correlation between the length of the longest intron and the sum of the lengths of all other introns in the gene and the preservation of the exact same absolute and relative position of the longest intron between orthologous genes.
Assuntos
Íntrons , Íntrons/genética , Animais , Humanos , Arabidopsis/genética , Spliceossomos/genética , Spliceossomos/metabolismoRESUMO
Oxysterols, oxidized derivatives of cholesterol, act in breast cancer (BC) as selective estrogen receptor modulators and affect cholesterol homeostasis, drug transport, nuclear and cell receptors, and other signaling proteins. Using data from three highly overlapping sets of patients (N = 162 in total) with early-stage estrogen-receptor-positive luminal BC-high-coverage targeted DNA sequencing (113 genes), mRNA sequencing, and full micro-RNA (miRNA) transcriptome microarrays-we describe complex oxysterol-related interaction (correlation) networks, with validation in public datasets (n = 538) and 11 databases. The ESR1-CH25H-INSIG1-ABCA9 axis was the most prominent, interconnected through miR-125b-5p, miR-99a-5p, miR-100-5p, miR-143-3p, miR-199b-5p, miR-376a-3p, and miR-376c-3p. Mutations in SC5D, CYP46A1, and its functionally linked gene set were associated with multiple differentially expressed oxysterol-related genes. STARD5 was upregulated in patients with positive lymph node status. High expression of hsa-miR-19b-3p was weakly associated with poor survival. This is the first study of oxysterol-related genes in BC that combines DNA, mRNA, and miRNA multiomics with detailed clinical data. Future studies should provide links between intratumoral oxysterol signaling depicted here, circulating oxysterol levels, and therapy outcomes, enabling eventual clinical exploitation of present findings.
Assuntos
Neoplasias da Mama , MicroRNAs , Oxisteróis , Humanos , Feminino , Neoplasias da Mama/patologia , RNA Mensageiro/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma/genéticaRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is a fatal disease characterized by early genetic alterations in telomerase reverse transcriptase promoter (TERTp) and ß-catenin (CTNNB1) genes and immune cell activation in the tumor microenvironment. As a novel approach, we wanted to assess patient survival influenced by combined presence of mutations and densities of CD8+ cytotoxic T cells. METHODS: Tissue samples were obtained from 67 HCC patients who had undergone resection. We analysed CD8+ T cells density, TERTp mutations, rs2853669 polymorphism, and CTNNB1 mutations. These variables were evaluated for time to recurrence (TTR) and disease free survival (DFS). RESULTS: TERTp mutations were found in 75.8% and CTNNB1 mutations in 35.6% of the patients. TERTp mutations were not associated with survival but polymorphism rs2853669 in TERTp was associated with improved TTR and DFS. CTNNB1 mutations were associated with improving TTR. High density of CD8+ T-lymphocytes in tumor center and invasive margin correlated with longer TTR and DFS. Combined genetic and immune factors further improved survival showing higher predictive values. E.g., combining CTNNB1 mutations and high density of CD8+ T-lymphocytes in tumor center yielded HRs of 0.12 (0.03-0.52), p = 0.005 for TTR and 0.25 (0.09-0.74), p = 0.01 for DFS. CONCLUSION: The results outline a novel integrative approach for prognostication through combining independent predictive factors from genetic and immune cell profiles. However, larger studies are needed to explore multiple cell types in the tumor microenvironment.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerase , Linfócitos T CD8-Positivos/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Contagem de Células , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Mutação , Polimorfismo de Nucleotídeo Único , Telomerase/genética , Microambiente Tumoral/genética , beta Catenina/genéticaRESUMO
The evidence that introns can influence different levels of transfer of genetic information between DNA and the final product is increasing. Longer first introns were found to be a general property of eukaryotic gene structure and shown to contain a higher fraction of conserved sequence and different functional elements. Our work brings more precise information about the position of the longest introns in human protein-coding genes and possible connection with biological function and gene expression. According to our results, the position of the longest intron can be localized to the first third of introns in 64%, the second third in 19%, and the third in 17%, with notable peaks at the middle and last introns of approximately 5% and 6%, respectively. The median lengths of the longest introns decrease with increasing distance from the start of the gene from approximately 15,000 to 5,000 bp. We have shown that the position of the longest intron is in some cases linked to the biological function of the given gene. For example, DNA repair genes have the longest intron more often in the second or third. In the distribution of gene expression according to the position of the longest intron, tissue-specific profiles can be traced with the highest expression usually at the absolute positions of intron 1 and 2. In this work, we present arguments supporting the hypothesis that the position of the longest intron in a gene is another biological factor modulating the transmission of genetic information. The position of the longest intron is related to biological functions in some human genes.
RESUMO
Colorectal cancer is one of the most common cancers and pancreatic cancer is among the most fatal and difficult to treat. New prognostic biomarkers are urgently needed to improve the treatment of colorectal and pancreatic cancer. Protein regulating cytokinesis 1 (PRC1), kinesin family member 14 (KIF14) and citron Rho-interacting serine/threonine kinase (CIT) serve important roles in cytokinesis, are strongly associated with cancer progression and have prognostic potential. The present study aimed to investigate the prognostic relevance of the PRC1, KIF14 and CIT genes in colorectal and pancreatic cancer. PRC1, KIF14 and CIT transcript expression was assessed by reverse transcription-quantitative PCR in tumors and paired distant unaffected mucosa from 67 patients with colorectal cancer and tumors and paired non-neoplastic control tissues from 48 patients with pancreatic cancer. The extent of transcript dysregulation between tumor and control tissues and between groups of patients divided by main clinical characteristics, namely patients' age and sex, disease stage, localization and grade, was determined. Finally, the associations of transcript levels in tumors with disease-free interval and overall survival time were evaluated. PRC1, KIF14 and CIT transcripts were upregulated in tumors compared with control tissues. PRC1, KIF14 and CIT levels strongly correlated to each other in both colorectal and pancreatic tumor and control tissues after correction for multiple testing. However, no significant associations were found among the transcript levels of PRC1, KIF14 and CIT and disease-free interval or overall survival time. In summary, the present study demonstrated mutual correlation of PRC1, KIF14 and CIT cytokinesis regulators with no clear prognostic value in pancreatic and colorectal cancers. Hence, according to the results of the present study, transcript levels of these genes cannot be clinically exploited as prognostic biomarkers in colorectal or pancreatic cancer patients.