Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 15(5): 1093-1106, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34623275

RESUMO

Ion-sensors play a major role in physiology and healthcare monitoring since they are capable of continuously collecting biological data from body fluids. Nevertheless, ion interference from background electrolytes present in the sample is a paramount challenge for a precise multi-ion-monitoring. In this work, we propose the first system combining a battery-powered portable multi-channel electronic front-end, and an embedded Multi-output Support Vector Regressor (M-SVR), that supplies an accurate, continuous, and real-time monitoring of sodium, potassium, ammonium, and calcium ions. These are typical analytes tracked during physical exercise. The front-end interface was characterized through a sensor array built with screen-printed electrodes. Nernstian sensitivity and limit of detection comparable to a bulky laboratory potentiometer were achieved in both water and artificial sweat. The multivariate calibration model was deployed on a Raspberry Pi where the activity of the target ions were locally computed. The M-SVR model was trained, optimized, and tested on an experimental dataset acquired following a design of experiments. We demonstrate that the proposed multivariate regressor is a compact, low-complexity, accurate, and unbiased estimator of sodium and potassium ions activity. A global normalized root mean-squared error improvement of 6.97%, and global mean relative error improvement of 10.26%, were achieved with respect to a standard Multiple Linear Regressor (MLR). Within a real-time multi-ion-monitoring task, the overall system enabled the continuous monitoring and accurate determination of the four target ions activity, with an average accuracy improvement of 27.73% compared to a simple MLR, and a prediction latency of [Formula: see text].


Assuntos
Sódio , Suor , Eletrodos , Eletrólitos , Íons
2.
IEEE Trans Biomed Circuits Syst ; 15(2): 294-302, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33739925

RESUMO

Continuous monitoring of anaesthetics infusion is demanded by anaesthesiologists to help in defining personalized dose, hence reducing risks and side effects. We propose the first piece of technology tailored explicitly to close the loop between anaesthesiologist and patient with continuous drug monitoring. Direct detection of drugs is achieved with electrochemical techniques, and several options are present in literature to measure propofol (widely used anaesthetics). Still, the sensors proposed do not enable in-situ detection, they do not provide this information continuously, and they are based on bulky and costly lab equipment. In this paper, we present a novel smart pen-shaped electronic system for continuous monitoring of propofol in human serum. The system consists of a needle-shaped sensor, a quasi digital front-end, a smart machine learning data processing, in a single wireless battery-operated embedded device featuring Bluetooth Low Energy (BLE) communication. The system has been tested and characterized in real, undiluted human serum, at 37  °C. The device features a limit of detection of 3.8  µM, meeting the requirement of the target application, with an electronics system 59% smaller and 81% less power consuming w.r.t. the state-of-the-art, using a smart machine learning classification for data processing, which guarantees up to twenty continuous measure.


Assuntos
Anestésicos , Aprendizado de Máquina , Anestesiologia/instrumentação , Monitoramento de Medicamentos , Fontes de Energia Elétrica , Eletrônica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA