Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 144(7): 1317-1327, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29766327

RESUMO

PURPOSE: We previously showed that carfilzomib (CFZ) has potent anti-proliferative and cytotoxic activity in a broad range of lung cancer cell lines. Here we investigate possible mechanisms of CFZ acquired resistance in lung cancer cell lines. METHODS: CFZ-resistant non-small cell lung cancer (NSCLC) cell lines were developed by exposing A549 and H520 cells to stepwise increasing concentrations of CFZ. Resistance to CFZ and cross-resistance to bortezomib and other chemotherapy drugs was measured using the MTT assay. Cytotoxicity to CFZ was determined using a CytoTox assay. Western blot was used to measure apoptosis, autophagy, and drug efflux transporter-related proteins. Quantitative targeted whole transcriptome sequencing and quantitative RT-PCR was used to measure gene expression. Flow cytometry was used to analyze intracellular accumulation of doxorubicin. RESULTS: The CFZ IC50 value of the resistant cells increased versus parental lines (2.5-fold for A549, 122-fold for H520). Resistant lines showed reduced expression of apoptosis and autophagy markers and reduced death versus parental lines following CFZ treatment. Both resistant lines exhibited higher P-glycoprotein (Pgp) gene (TempO-Seq® analysis, increased 1.2-fold in A549, > 9000-fold in H520) and protein expression levels versus parental lines. TempO-Seq® analysis indicated other drug resistance pathways were upregulated. The resistant cell lines demonstrated less accumulation of intracellular doxorubicin, and were cross-resistant to other Pgp client drugs: bortezomib, doxorubicin, and paclitaxel, but not cisplatin. CONCLUSIONS: Upregulation of Pgp appears to be an important, but not the only, mechanism of CFZ resistance in NSCLC cell lines.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Pulmonares , Oligopeptídeos/farmacologia , Células A549 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
2.
Mol Imaging ; 152016.
Artigo em Inglês | MEDLINE | ID: mdl-27140422

RESUMO

AcidoCEST magnetic resonance imaging (MRI) has previously been shown to measure tumor extracellular pH (pHe) with excellent accuracy and precision. This study investigated the ability of acidoCEST MRI to monitor changes in tumor pHe in response to therapy. To perform this study, we used the Granta 519 human mantle cell lymphoma cell line, which is an aggressive B-cell malignancy that demonstrates activation of the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway. We performed in vitro and in vivo studies using the Granta 519 cell line to investigate the efficacy and associated changes induced by the mTOR inhibitor, everolimus (RAD001). AcidoCEST MRI studies showed a statistically significant increase in tumor pHe of 0.10 pH unit within 1 day of initiating treatment, which foreshadowed a decrease in tumor growth of the Granta 519 xenograft model. AcidoCEST MRI then measured a decrease in tumor pHe 7 days after initiating treatment, which foreshadowed a return to normal tumor growth rate. Therefore, this study is a strong example that acidoCEST MRI can be used to measure tumor pHe that may serve as a marker for therapeutic efficacy of anticancer therapies.


Assuntos
Acidose/diagnóstico por imagem , Everolimo/administração & dosagem , Linfoma de Célula do Manto/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Serina-Treonina Quinases TOR/metabolismo , Acidose/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Linfoma de Célula do Manto/química , Linfoma de Célula do Manto/metabolismo , Camundongos , Imagem Molecular/métodos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Cancer Res Clin Oncol ; 142(3): 549-60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26385374

RESUMO

PURPOSE: The endoplasmic reticulum (ER) stress response is a therapeutic target for pharmacologic intervention in cancer cells. We hypothesized that combining carfilzomib (CFZ), a proteasome inhibitor, and vorinostat (SAHA), a histone deacetylase (HDAC) inhibitor, would synergistically activate ER stress in non-small cell lung cancer (NSCLC) cell lines, resulting in enhanced anti-tumor activity. METHODS: Five NSCLC cell lines were treated with CFZ, SAHA, or the combination and cell proliferation measured using the MTT assay. Calcusyn software was utilized to determine the combination index as a measure of synergy. Cell viability and cytotoxicity were measured using trypan blue exclusion, CellTiter, and CytoTox assays. Western blot was used to measure markers of apoptosis, ER stress, and oxidative stress-related proteins. Reactive oxygen species (ROS) was measured using the fluorophore CM-H2DCFDA. RESULTS: Synergistic activity was observed for all cell lines following 48 and 72 h of combined treatment. H520 and A549 cell lines were used to assess viability and apoptosis. In both cell lines, increased death and cleaved caspase-3 were observed following combination treatment as compared with single-agent treatments. Combination therapy was associated with upregulation of ER stress-regulated proteins including activating transcription factor 4, GRP78/BiP, and C/EBP homologous protein. Both cell lines also showed increased ROS and the oxidative stress-related protein, heat shock protein 70. CONCLUSION: Combining proteasome inhibition with HDAC inhibition enhances ER stress, which may contribute to the synergistic anticancer activity observed in NSCLC cell lines. Further preclinical and clinical studies of CFZ + SAHA in NSCLC are warranted.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Oligopeptídeos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Chaperona BiP do Retículo Endoplasmático , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/uso terapêutico , Neoplasias Pulmonares/patologia , Oligopeptídeos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Vorinostat
4.
J Exp Clin Cancer Res ; 34: 31, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25888489

RESUMO

PURPOSE: The anti-tumor activity of glucose analogs 2-deoxy-glucose (2-DG) and D-allose was investigated alone or in combination with p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 or platinum analogs as a strategy to pharmacologically target glycolytic tumor phenotypes. METHODS: Hypoxia inducible factor-1 alpha (HIF-1α) protein accumulation in pancreatic cell lines treated with SB202190 alone and in combination with glucose analogs was analyzed by Western blot. HIF-1α transcriptional activity was measured in MIA PaCa-2 cells stably transfected with a hypoxia response element luciferase reporter following treatment with glucose analogs alone, and in combination with SB202190. Induction of cleaved poly(ADP-ribose) polymerase (PARP) was measured by Western blot in the MIA PaCa-2 cells. In vitro anti-proliferative activity of 2-DG and D-allose alone, or in combination with oxaliplatin (pancreatic cell lines), cisplatin (ovarian cell lines), or with SB202190 were investigated using the MTT assay. RESULTS: SB202190 decreased HIF-1α protein accumulation and transcriptional activity. 2-DG demonstrated greater anti-proliferative activity than D-allose. Pre-treatment with SB202190 enhanced activity of both 2-DG and D-allose in MIA PaCa-2, BxPC-3, ASPC-1, and SK-OV-3 cells. The combination of D-allose and platinum agents was additive to moderately synergistic in all but the OVCAR-3 and HEY cells. SB202190 pre-treatment further enhanced activity of D-allose and 2-DG with platinum agents in most cell lines investigated. CONCLUSIONS: SB202190 induced sensitization of tumor cells to 2-DG and D-allose may be partially mediated by inhibition of HIF-1α activity. Combining glucose analogs and p38 MAPK inhibitors with chemotherapy may be an effective approach to target glycolytic tumor phenotypes.


Assuntos
Antineoplásicos/farmacologia , Desoxiglucose/farmacologia , Glucose/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Genes Reporter , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imidazóis/farmacologia , Ácido Láctico/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Piridinas/farmacologia , Transcrição Gênica
5.
Eur J Immunol ; 44(8): 2489-2499, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24777831

RESUMO

Primarily defined by their antigen-presenting property, dendritic cells (DCs) are being implemented as cancer vaccines in immunotherapeutic interventions. DCs can also function as direct tumor cell killers. How DC cytotoxic activity can be efficiently harnessed and the mechanisms controlling this nonconventional property are not fully understood. We report here that the tumoricidal potential of mouse DCs generated from myeloid precursors with GM-CSF and IL-15 (IL-15 DCs) can be triggered with the Toll-like receptor (TLR) 4 ligand lipopolysaccharide to a similar extent compared with that of their counterparts, conventionally generated with IL-4 (IL-4 DCs). The mechanism of tumor cell killing depends on the induction of iNOS expression by DCs. In contrast, interferon (IFN)-γ induces the cytotoxic activity of IL-4 but not IL-15 DCs. Although the IFN-γ-STAT-1 signaling pathway is overall functional in IL-15 DCs, IFN-γ fails to induce iNOS expression in these cells. iNOS expression is negatively controlled in IFN-γ-stimulated IL-15 DCs by the cooperation between the E3 SUMO ligase PIAS1 and STAT-3, and can be partially restored with PIAS1 siRNA and STAT-3 inhibitors.


Assuntos
Células Dendríticas/metabolismo , Interferon gama/metabolismo , Interleucina-15/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-4/metabolismo , Ligantes , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo
6.
Cancer Res ; 74(1): 104-18, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24197130

RESUMO

Myeloid-derived suppressor cells (MDSC) expand in tumor-bearing hosts and play a central role in cancer immune evasion by inhibiting adaptive and innate immunity. They therefore represent a major obstacle for successful cancer immunotherapy. Different strategies have thus been explored to deplete and/or inactivate MDSC in vivo. Using a murine mammary cancer model, we demonstrated that doxorubicin selectively eliminates MDSC in the spleen, blood, and tumor beds. Furthermore, residual MDSC from doxorubicin-treated mice exhibited impaired suppressive function. Importantly, the frequency of CD4(+) and CD8(+) T lymphocytes and consequently the effector lymphocytes or natural killer (NK) to suppressive MDSC ratios were significantly increased following doxorubicin treatment of tumor-bearing mice. In addition, the proportion of NK and cytotoxic T cell (CTL) expressing perforin and granzyme B and of CTL producing IFN-γ was augmented by doxorubicin administration. Of therapeutic relevance, this drug efficiently combined with Th1 or Th17 lymphocytes to suppress tumor development and metastatic disease. MDSC isolated from patients with different types of cancer were also sensitive to doxorubicin-mediated cytotoxicity in vitro. These results thus indicate that doxorubicin may be used not only as a direct cytotoxic drug against tumor cells, but also as a potent immunomodulatory agent that selectively impairs MDSC-induced immunosuppression, thereby fostering the efficacy of T-cell-based immunotherapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Imunoterapia Adotiva/métodos , Células Mieloides/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Células Mieloides/patologia
7.
J Exp Clin Cancer Res ; 33: 111, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25612802

RESUMO

BACKGROUND: Carfilzomib (CFZ) is a proteasome inhibitor that selectively and irreversibly binds to its target and has been approved in the US for treatment of relapsed and refractory multiple myeloma. Phase 1B studies of CFZ reported signals of clinical activity in solid tumors, including small cell lung cancer (SCLC). The aim of this study was to investigate the activity of CFZ in lung cancer models. METHODS: A diverse panel of human lung cancer cell lines and a SHP77 small cell lung cancer xenograft model were used to investigate the anti-tumor activity of CFZ. RESULTS: CFZ treatment inhibited both the constitutive proteasome and the immunoproteasome in lung cancer cell lines. CFZ had marked anti-proliferative activity in A549, H1993, H520, H460, and H1299 non-small cell lung cancer (NSCLC) cell lines, with IC50 values after 96 hour exposure from <1.0 nM to 36 nM. CFZ had more variable effects in the SHP77 and DMS114 SCLC cell lines, with IC50 values at 96 hours from <1 nM to 203 nM. Western blot analysis of CFZ-treated H1993 and SHP77 cells showed cleavage of poly ADP ribose polymerase (PARP) and caspase-3, indicative of apoptosis, and induction of microtubule-associated protein-1 light chain-3B (LC3B), indicative of autophagy. In SHP77 flank xenograft tumors, CFZ monotherapy inhibited tumor growth and prolonged survival, while no additive or synergistic anti-tumor efficacy was observed for CFZ + cisplatin (CDDP). CONCLUSIONS: CFZ demonstrated anti-proliferative activity in lung cancer cell lines in vitro and resulted in a significant survival advantage in mice with SHP77 SCLC xenografts, supporting further pre-clinical and clinical investigations of CFZ in NSCLC and SCLC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/patologia , Oligopeptídeos/farmacologia , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Camundongos , Inibidores de Proteassoma/farmacologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/mortalidade , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Leukoc Biol ; 92(5): 987-97, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22891289

RESUMO

MDSCs and Tregs play an essential role in the immunosuppressive networks that contribute to tumor-immune evasion. The mechanisms by which tumors promote the expansion and/or function of these suppressive cells and the cross-talk between MDSC and Treg remain incompletely defined. Previous reports have suggested that MDSC may contribute to Treg induction in cancer. Herein, we provide evidence that tumor-induced gr-MDSCs, endowed with the potential of suppressing conventional T Lc, surprisingly impair TGF-ß1-mediated generation of CD4(+)CD25(+)FoxP3(+) iTregs. Furthermore, gr-MDSCs impede the proliferation of nTregs without, however, affecting FoxP3 expression. Suppression of iTreg differentiation from naïve CD4(+) cells by gr-MDSC occurs early in the polarization process, requires inhibition of early T cell activation, and depends on ROS and IDO but does not require arginase 1, iNOS, NO, cystine/cysteine depletion, PD-1 and PD-L1 signaling, or COX-2. These findings thus indicate that gr-MDSCs from TB hosts have the unanticipated ability to restrict immunosuppressive Tregs.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Tolerância Imunológica/imunologia , Células Mieloides/imunologia , Neoplasias Experimentais/imunologia , Evasão Tumoral/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Comunicação Celular/imunologia , Separação Celular , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Imuno-Histoquímica , Subunidade alfa de Receptor de Interleucina-2/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Fator de Crescimento Transformador beta/metabolismo
9.
Pancreas ; 41(5): 773-81, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22273698

RESUMO

OBJECTIVES: We investigated the signaling pathways activated in response to interleukin 6 (IL-6) in pancreatic cell lines, with a focus on signal transducer and activator of transcription 3 (STAT3) and proto-oncogene serine/threonine-protein (Pim-1) kinase. METHODS: Interleukin 6 receptor (IL-6R) expression and IL-6-induced cell signaling was measured by Western blotting in human pancreatic cell lines. Cucurbitacin I was used as a pharmacological tool to investigate the role of STAT3 in Pim-1 activation. Stably overexpressing Pim-1 kinase cell lines were characterized for their response to IL-6 in vitro and for their growth rate as flank tumors in scid mice. RESULTS: Interleukin 6 receptor was expressed across multiple cancer cell lines. In Panc-1 cells, IL-6 treatment increased expression of phosphorylation of signal transducer and activator of transcription 3 and Pim-1 kinase. Cucurbitacin I treatment alone increased pErk1/2 expression in wild-type and Pim-1-overexpressing cell lines and resulted in exaggerated Pim-1 kinase protein levels in control and IL-6-stimulated cells, suggesting that up-regulation of Pim-1 may be partially STAT3 independent. Pim-1 overexpression did not significantly affect growth rate in vitro or in vivo in Panc-1 or MiaPaCa2 cell lines. CONCLUSIONS: Interleukin 6 activates STAT3 and stimulates Pim-1 kinase in pancreatic cell line models. The regulation and consequence of Pim-1 expression seems to be highly context dependent.


Assuntos
Interleucina-6/farmacologia , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Fator de Transcrição STAT3/genética , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo , Transplante Heterólogo , Triterpenos/farmacologia , Carga Tumoral/genética
10.
Mol Carcinog ; 47(5): 349-60, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17935202

RESUMO

A cell line that produces mouse squamous cell carcinoma (6M90) was modified to develop a cell line with an introduced Tet-responsive catalase transgene (MTOC2). We have previously reported that the overexpressed catalase in the MTOC2 cells reverses the malignant phenotype in part by decreasing epidermal growth factor receptor (EGFR) signaling. With this work we expanded the investigation into the differences between these two cell lines. We found that the decreased EGFR pathway activity of the MTOC2 cells is not because of reduced autocrine secretion of an epidermal growth factor (EGF) ligand but rather because of lower basal receptor activity. Phosphorylated levels of the mitogen-activated protein kinase (MAPK) members JNK and p38 were both higher in the 6M90 cells with low catalase when compared with the MTOC2 cell line. Although treatment with an EGFR inhibitor, AG1478, blocked the increased activity of JNK in the 6M90 cells, a similar effect was not observed for p38. Basal levels of downstream c-jun transcription were also found to be higher in the 6M90 cells versus MTOC2 cells. Activated p38 was found to down-regulate the JNK MAPK pathway in the 6M90 cells. However, the 6M90 cells contain constitutively high levels of phosphorylated JNK, generating higher levels of phosphorylated c-jun and total c-jun than those in the MTOC2 cells. Inhibition of JNK activity in the 6M90 cells reduced AP-1 transcription and cell proliferation. The data confirm the inhibitory effects of catalase on tumor cell growth, specifically through a ligand-independent decrease in the stress activated JNK pathway.


Assuntos
Carcinoma de Células Escamosas/patologia , Catalase/metabolismo , Proliferação de Células , Receptores ErbB/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Queratinócitos/citologia , Animais , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Catalase/genética , Ciclo Celular , Células Cultivadas , Queratinócitos/metabolismo , Camundongos , Fosforilação , Espécies Reativas de Oxigênio , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional , Transgenes/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA