Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
PLoS Pathog ; 20(6): e1012290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38861571

RESUMO

Taï Forest virus (TAFV) is a negative-sense RNA virus in the Filoviridae family. TAFV has caused only a single human infection, but several disease outbreaks in chimpanzees have been linked to this virus. Limited research has been done on this human-pathogenic virus. We sought to establish an animal model to assess TAFV disease progression and pathogenicity at our facility. We had access to two different viral stock preparations from different institutions, both originating from the single human case. Type I interferon receptor knockout mice were inoculated with TAFV stock 1 or stock 2 by the intraperitoneal route. Inoculation resulted in 100% survival with no disease regardless of viral stock preparation or infectious dose. Next, cynomolgus macaques were inoculated with TAFV stock 1 or stock 2. Inoculation with TAFV stock 1 resulted in 100% survival and robust TAFV glycoprotein-specific IgG responses including neutralizing antibodies. In contrast, macaques infected with TAFV stock 2 developed disease and were euthanized 8-11 days after infection exhibiting viremia, thrombocytopenia, and increased inflammatory mediators identified by transcriptional analysis. Histopathologic analysis of tissue samples collected at necropsy confirmed classic filovirus disease in numerous organs. Genomic differences in both stock preparations were mapped to several viral genes which may have contributed to disease severity. Taken together, we demonstrate that infection with the two TAFV stocks resulted in no disease in mice and opposing disease phenotypes in cynomolgus macaques, highlighting the impact of viral stock propagation on pathogenicity in animal models.


Assuntos
Modelos Animais de Doenças , Macaca fascicularis , Camundongos Knockout , Animais , Camundongos , Humanos , Replicação Viral , Infecções por Alphavirus/virologia , Infecções por Alphavirus/patologia , Receptor de Interferon alfa e beta/genética
2.
Emerg Microbes Infect ; 13(1): 2294860, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38165394

RESUMO

COVID-19 remains a major public health concern. Monoclonal antibodies have received emergency use authorization (EUA) for pre-exposure prophylaxis against COVID-19 among high-risk groups for treatment of mild to moderate COVID-19. In addition to recombinant biologics, engineered synthetic DNA-encoded antibodies (DMAb) are an important strategy for direct in vivo delivery of protective mAb. A DMAb cocktail was synthetically engineered to encode the immunoglobulin heavy and light chains of two different two different Fc-engineered anti-SARS-CoV-2 antibodies. The DMAbs were designed to enhance in vivo expression and delivered intramuscularly to cynomolgus and rhesus macaques with a modified in vivo delivery regimen. Serum levels were detected in macaques, along with specific binding to SARS-CoV-2 spike receptor binding domain protein and neutralization of multiple SARS-CoV-2 variants of concern in pseudovirus and authentic live virus assays. Prophylactic administration was protective in rhesus macaques against signs of SARS-CoV-2 (USA-WA1/2020) associated disease in the lungs. Overall, the data support further study of DNA-encoded antibodies as an additional delivery mode for prevention of COVID-19 severe disease. These data have implications for human translation of gene-encoded mAbs for emerging infectious diseases and low dose mAb delivery against COVID-19.


Assuntos
COVID-19 , Profilaxia Pré-Exposição , Animais , Macaca mulatta , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Antivirais , Anticorpos Monoclonais , Macaca fascicularis , DNA , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
3.
Sci Adv ; 9(36): eadj1428, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672587

RESUMO

Kyasanur Forest disease virus (KFDV) is an endemic arbovirus in western India mainly transmitted by hard ticks of the genus Haemaphysalis. KFDV causes Kyasanur Forest disease (KFD), a syndrome including fever, gastrointestinal symptoms, and hemorrhages. There are no approved treatments, and the efficacy of the only vaccine licensed in India has recently been questioned. Here, we studied the protective efficacy of a vesicular stomatitis virus (VSV)-based vaccine expressing the KFDV precursor membrane and envelope proteins (VSV-KFDV) in pigtailed macaques. VSV-KFDV vaccination was found to be safe and elicited strong humoral and cellular immune responses. A single-dose vaccination reduced KFDV loads and pathology and protected macaques from KFD-like disease. Furthermore, VSV-KFDV elicited cross-reactive neutralizing immune responses to Alkhurma hemorrhagic fever virus, a KFDV variant found in Saudi Arabia.


Assuntos
Doença da Floresta de Kyasanur , Vacinas , Animais , Doença da Floresta de Kyasanur/prevenção & controle , Vacinação , Reações Cruzadas , Macaca
4.
Front Immunol ; 14: 1216225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731485

RESUMO

Introduction: Immune correlates of protection afforded by PHV02, a recombinant vesicular stomatitis (rVSV) vector vaccine against Nipah virus (NiV) disease, were investigated in the African green monkey (AGM) model. Neutralizing antibody to NiV has been proposed as the principal mediator of protection against future NiV infection. Methods: Two approaches were used to determine the correlation between neutralizing antibody levels and outcomes following a severe (1,000 median lethal doses) intranasal/intratracheal (IN/IT) challenge with NiV (Bangladesh): (1) reduction in vaccine dose given 28 days before challenge and (2) challenge during the early phase of the antibody response to the vaccine. Results: Reduction in vaccine dose to very low levels led to primary vaccine failure rather than a sub-protective level of antibody. All AGMs vaccinated with the nominal clinical dose (2 × 107 pfu) at 21, 14, or 7 days before challenge survived. AGMs vaccinated at 21 days before challenge had neutralizing antibodies (geometric mean titer, 71.3). AGMs vaccinated at 7 or 14 days before challenge had either undetectable or low neutralizing antibody titers pre-challenge but had a rapid rise in titers after challenge that abrogated the NiV infection. A simple logistic regression model of the combined studies was used, in which the sole explanatory variable was pre-challenge neutralizing antibody titers. For a pre-challenge titer of 1:5, the predicted survival probability is 100%. The majority of animals with pre-challenge neutralizing titer of ≥1:20 were protected against pulmonary infiltrates on thoracic radiograms, and a majority of those with titers ≥1:40 were protected against clinical signs of illness and against a ≥fourfold antibody increase following challenge (indicating sterile immunity). Controls receiving rVSV-Ebola vaccine rapidly succumbed to NiV challenge, eliminating the innate immunity stimulated by the rVSV vector as a contributor to survival in monkeys challenged as early as 7 days after vaccination. Discussion and conclusion: It was concluded that PHV02 vaccine elicited a rapid onset of protection and that any detectable level of neutralizing antibody was a functional immune correlate of survival.


Assuntos
Vacinas contra Ebola , Doença pelo Vírus Ebola , Infecções por Henipavirus , Vírus Nipah , Estomatite Vesicular , Animais , Chlorocebus aethiops , Infecções por Henipavirus/prevenção & controle , Anticorpos Neutralizantes
5.
Emerg Microbes Infect ; 12(2): 2239950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470396

RESUMO

Taï Forest virus (TAFV) is a lesser-known ebolavirus that causes lethal infections in chimpanzees and is responsible for a single human case. Limited research has been done on this human pathogen; however, with the recent emergence of filoviruses in West Africa, further investigation and countermeasure development against this virus is warranted. We developed a vesicular stomatitis virus (VSV)-based vaccine expressing the TAFV glycoprotein as the viral antigen and assessed it for protective efficacy in nonhuman primates (NHPs). Following a single high-dose vaccination, NHPs developed antigen-specific binding and neutralizing antibodies as well as modest T cell responses. Importantly, all vaccinated NHPs were uniformly protected from disease after lethal TAFV challenge while the naïve control group succumbed to the disease. Histopathologic lesions consistent with filovirus disease were present in control NHPs but were not observed in vaccinated NHPs. Transcriptional analysis of whole blood samples obtained after vaccination and challenge was performed to gain insight into molecular underpinnings conferring protection. Differentially expressed genes (DEG) detected 7 days post-vaccination were enriched to processes associated with innate immunity and antiviral responses. Only a small number of DEG was detected in vaccinated NHPs post-challenge while over 1,000 DEG were detected in control NHPs at end-stage disease which mapped to gene ontology terms indicative of defense responses and inflammation. Taken together, this data demonstrates the effective single-dose protection of the VSV-TAFV vaccine, and its potential for use in outbreaks.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Vacinas Virais , Animais , Humanos , Macaca fascicularis , Anticorpos Antivirais , Florestas
6.
J Infect Dis ; 228(Suppl 7): S617-S625, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37477943

RESUMO

Ebola virus (EBOV)-Makona infected more than 30 000 people from 2013 to 2016 in West Africa, among them many health care workers including foreign nationals. Most of the infected foreign nationals were evacuated and treated in their respective home countries, resulting in detailed reports of the acute disease following EBOV infection as well as descriptions of symptoms now known as post-Ebola syndrome, which occurred months after the infection. Symptoms associated with this syndrome include uveitis and neurological manifestations. In 1 of our EBOV-Makona nonhuman primate (NHP) studies, 1 NHP was euthanized on day 28 after infection having completely recovered from the acute disease. During convalescence, this NHP developed neurological signs and acute respiratory distress requiring euthanasia. The organ tropism had changed with high virus titers in lungs, brain, eye, and reproductive organs but no virus in the typical target organs for acute EBOV infection. This in part reflects sequelae described for EBOV survivors albeit developing quicker after recovery from acute disease.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Macaca mulatta , Doença Aguda , Progressão da Doença
7.
J Infect Dis ; 228(Suppl 7): S671-S676, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290042

RESUMO

Ebola virus (EBOV) and Marburg virus (MARV) made headlines in the past decade, causing outbreaks of human disease in previously nonendemic yet overlapping areas. While EBOV outbreaks can be mitigated with licensed vaccines and treatments, there is not yet a licensed countermeasure for MARV. Here, we used nonhuman primates (NHPs) previously vaccinated with vesicular stomatitis virus (VSV)-MARV and protected against lethal MARV challenge. After a resting period of 9 months, these NHPs were revaccinated with VSV-EBOV and challenged with EBOV, resulting in 75% survival. Surviving NHPs developed EBOV glycoprotein (GP)-specific antibody titers and no viremia or clinical signs of disease. The single vaccinated NHP succumbing to challenge showed the lowest EBOV GP-specific antibody response after challenge, supporting previous findings with VSV-EBOV that antigen-specific antibodies are critical in mediating protection. This study again demonstrates that VSVΔG-based filovirus vaccine can be successfully used in individuals with preexisting VSV vector immunity, highlighting the platform's applicability for consecutive outbreak response.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Estomatite Vesicular , Animais , Humanos , Doença pelo Vírus Ebola/prevenção & controle , Estomatite Vesicular/prevenção & controle , Vesiculovirus , Vírus da Estomatite Vesicular Indiana , Anticorpos Antivirais , Glicoproteínas , Primatas
8.
Lancet Microbe ; 4(3): e171-e178, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739878

RESUMO

BACKGROUND: The recent Sudan virus (SUDV) outbreak in Uganda highlights the need for rapid response capabilities, including development of vaccines against emerging viruses with high public health impact. We aimed to develop a Sudan virus-specific vaccine suitable for emergency use during outbreaks. METHODS: We generated and characterised a vesicular stomatitis virus (VSV)-based vaccine, VSV- SUDV, and evaluated the protective efficacy following a single-dose vaccination against lethal SUDV infection in non-human primates (NHPs). We used male and female cynomolgus macaques (n=11) aged 6-11 years and weighing 3·8-9·0 kg. Animals received a 1 mL intramuscular injection for vaccination containing either 1 × 107 plaque forming units (PFU) VSV-SUDV or 1 × 107 PFU of a VSV-based vaccine against Marburg virus (control; five NHPs). NHPs were challenged intramuscularly 28 days after vaccination with 1 × 104 TCID50 SUDV-Gulu. We assessed anaesthetised NHPs on days 28, 21, 14, and 7 before challenge; days 0, 3, 6, 9, 14, 21, 28, and 35 after challenge; and at euthanasia (day 40 for survivors). As we repurposed NHPs from a successful VSV-Ebola virus (EBOV) vaccine efficacy study, we also investigated VSV-EBOV's cross-protective potential against SUDV challenge. FINDINGS: Of the six NHPs given VSV-SUDV, none showed any signs of disease in response to the challenge. Four of the five NHPs in the control group developed characteristic clinical signs of Sudan virus diseases. SUDV glycoprotein-specific IgG concentrations peaked 14 days after vaccination (titre of >1:10 000) and reached their highest concentrations at 6 days after challenge (1:25 600-1:102 400). Although the NHPs developed cross-reactive humoral responses to SUDV after VSV-EBOV vaccination and EBOV challenge, there was little cross-protection. INTERPRETATION: These data emphasise the need for species-specific vaccines for each human-pathogenic Ebolavirus. Furthermore, although previous VSV-EBOV immunity is boosted through VSV-SUDV vaccination, it only has a small effect on the immunogenicity and protective efficacy of VSV-SUDV vaccination against SUDV challenge. FUNDING: Intramural Research Program, US National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Estomatite Vesicular , Vacinas Virais , Estados Unidos , Animais , Masculino , Feminino , Doença pelo Vírus Ebola/prevenção & controle , Uganda , Macaca fascicularis , Vesiculovirus , Vírus da Estomatite Vesicular Indiana
9.
EBioMedicine ; 89: 104463, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36774693

RESUMO

BACKGROUND: Marburg virus (MARV) is the causative agent of Marburg virus disease (MVD) which has a case fatality rate up to ∼90% in humans. Recently, there were cases reported in Guinea and Ghana highlighting this virus as a high-consequence pathogen potentially threatening global public health. There are no licensed treatments or vaccines available today. We used a vesicular stomatitis virus (VSV)-based vaccine expressing the MARV-Angola glycoprotein (VSV-MARV) as the viral antigen. Previously, a single dose of 1 × 107 plaque-forming units (PFU) administered 7 days before challenge resulted in uniform protection from disease in cynomolgus macaques. METHODS: As we sought to lower the vaccination dose to achieve a higher number of vaccine doses per vial, we administered 1 × 105 or 1 × 103 PFU 14 days or 1 × 103 PFU 7 days before challenge to cohorts of cynomolgus macaques and investigated immunity as well as protective efficacy. RESULTS: Vaccination resulted in uniform protection with no detectable viremia. Antigen-specific IgG responses were induced by both vaccine concentrations and were sustained until the study endpoint. Neutralizing antibody responses and antibody-dependent cellular phagocytosis were observed. The cellular response after vaccination was characterized by an early induction of NK cell activation. Additionally, antigen-specific memory T cell subsets were detected in all vaccination cohorts indicating that while the primary protective mechanism of VSV-MARV is the humoral response, a functional cellular response is also induced. INTERPRETATION: Overall, this data highlights VSV-MARV as a viable and fast-acting MARV vaccine candidate suitable for deployment in emergency outbreak situations and supports its clinical development. FUNDING: This work was funded by the Intramural Research Program NIAID, NIH.


Assuntos
Doença do Vírus de Marburg , Vacinas Virais , Animais , Humanos , Doença do Vírus de Marburg/prevenção & controle , Macaca fascicularis , Vacinação , Anticorpos Neutralizantes
10.
NPJ Vaccines ; 7(1): 171, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543806

RESUMO

Nipah virus (NiV) is a highly pathogenic and re-emerging virus, which causes sporadic but severe infections in humans. Currently, no vaccines against NiV have been approved. We previously showed that ChAdOx1 NiV provides full protection against a lethal challenge with NiV Bangladesh (NiV-B) in hamsters. Here, we investigated the efficacy of ChAdOx1 NiV in the lethal African green monkey (AGM) NiV challenge model. AGMs were vaccinated either 4 weeks before challenge (prime vaccination), or 8 and 4 weeks before challenge with ChAdOx1 NiV (prime-boost vaccination). A robust humoral and cellular response was detected starting 14 days post-initial vaccination. Upon challenge, control animals displayed a variety of signs and had to be euthanized between 5 and 7 days post inoculation. In contrast, vaccinated animals showed no signs of disease, and we were unable to detect infectious virus in tissues and all but one swab. No to limited antibodies against fusion protein or nucleoprotein antigen could be detected 42 days post challenge, suggesting that vaccination induced a very robust protective immune response preventing extensive virus replication.

11.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36509288

RESUMO

An animal model that fully recapitulates severe COVID-19 presentation in humans has been a top priority since the discovery of SARS-CoV-2 in 2019. Although multiple animal models are available for mild to moderate clinical disease, models that develop severe disease are still needed. Mink experimentally infected with SARS-CoV-2 developed severe acute respiratory disease, as evident by clinical respiratory disease, radiological, and histological changes. Virus was detected in nasal, oral, rectal, and fur swabs. Deep sequencing of SARS-CoV-2 from oral swabs and lung tissue samples showed repeated enrichment for a mutation in the gene encoding nonstructural protein 6 in open reading frame 1ab. Together, these data indicate that American mink develop clinical features characteristic of severe COVID-19 and, as such, are uniquely suited to test viral countermeasures.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Vison , Pulmão/diagnóstico por imagem
12.
Sci Adv ; 8(46): eade1860, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36399566

RESUMO

Since the emergence of SARS-CoV-2, five different variants of concern (VOCs) have been identified: Alpha, Beta, Gamma, Delta, and Omicron. Because of confounding factors in the human population, such as preexisting immunity, comparing severity of disease caused by different VOCs is challenging. Here, we investigate disease progression in the rhesus macaque model upon inoculation with the Delta, Omicron BA.1, and Omicron BA.2 VOCs. Disease severity in rhesus macaques inoculated with Omicron BA.1 or BA.2 was lower than those inoculated with Delta and resulted in significantly lower viral loads in nasal swabs, bronchial cytology brush samples, and lung tissue in rhesus macaques. Cytokines and chemokines were up-regulated in nasosorption samples of Delta animals compared to Omicron BA.1 and BA.2 animals. Overall, these data suggest that, in rhesus macaques, Omicron replicates to lower levels than the Delta VOC, resulting in reduced clinical disease.

13.
bioRxiv ; 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35971544

RESUMO

Since the emergence of SARS-CoV-2, five different variants of concern (VOCs) have been identified: Alpha, Beta, Gamma, Delta, and Omicron. Due to confounding factors in the human population, such as pre-existing immunity, comparing severity of disease caused by different VOCs is challenging. Here, we investigate disease progression in the rhesus macaque model upon inoculation with the Delta, Omicron BA.1, and Omicron BA.2 VOCs. Disease severity in rhesus macaques inoculated with Omicron BA.1 or BA.2 was lower than those inoculated with Delta and resulted in significantly lower viral loads in nasal swabs, bronchial cytology brush samples, and lung tissue in rhesus macaques. Cytokines and chemokines were upregulated in nasosorption samples of Delta animals compared to Omicron BA.1 and BA.2 animals. Overall, these data suggests that in rhesus macaques, Omicron replicates to lower levels than the Delta VOC, resulting in reduced clinical disease.

14.
J Virol ; 96(16): e0072822, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35924920

RESUMO

The 1918 H1N1 influenza pandemic was among the most severe in history, taking the lives of approximately 50 million people worldwide, and novel prophylactic vaccines are urgently needed to prevent another pandemic. Given that macaques are physiologically relevant preclinical models of human immunology that have advanced the clinical treatment of infectious diseases, a lethal pandemic influenza challenge model would provide a stringent platform for testing new influenza vaccine concepts. To this end, we infected rhesus macaques and Mauritian cynomolgus macaques with highly pathogenic 1918 H1N1 influenza virus and assessed pathogenesis and disease severity. Despite infection with a high dose of 1918 influenza delivered via multiple routes, rhesus macaques demonstrated minimal signs of disease, with only intermittent viral shedding. Cynomolgus macaques infected via intrabronchial instillation demonstrated mild symptoms, with disease severity depending on the infection dose. Cynomolgus macaques infected with a high dose of 1918 influenza delivered via multiple routes experienced moderate disease characterized by consistent viral shedding, pulmonary infiltrates, and elevated inflammatory cytokine levels. However, 1918 influenza was uniformly nonlethal in these two species, demonstrating that this isolate is insufficiently pathogenic in rhesus and Mauritian cynomolgus macaques to support testing novel prophylactic influenza approaches where protection from severe disease combined with a lethal outcome is desired as a highly stringent indication of vaccine efficacy. IMPORTANCE The world remains at risk of an influenza pandemic, and the development of new therapeutic and preventative modalities is critically important for minimizing human death and suffering during the next influenza pandemic. Animal models are central to the development of new therapies and vaccine approaches. In particular, nonhuman primates like rhesus and cynomolgus macaques are highly relevant preclinical models given their physiological and immunological similarities to humans. Unfortunately, there remains a scarcity of macaque models of pandemic influenza with which to test novel antiviral modalities. Here, we demonstrate that even at the highest doses tested, 1918 influenza was not lethal in these two macaque species, suggesting that they are not ideal for the development and testing of novel pandemic influenza-specific vaccines and therapies. Therefore, other physiologically relevant nonhuman primate models of pandemic influenza are needed.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Macaca fascicularis , Macaca mulatta
15.
PNAS Nexus ; 1(3): pgac073, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35860599

RESUMO

Until recently, it was assumed that members of the family Bornaviridae could not induce severe disease in humans. Today, however, Borna disease virus 1 (BoDV-1), as well as the more recently emerged variegated squirrel bornavirus 1 (VSBV-1), are known as causative agents of lethal encephalitis in humans. In order to establish animal models reflecting the pathogenesis in humans and for countermeasure efficacy testing, we infected twelve rhesus macaques (Macaca mulatta) either with VSBV-1 or with BoDV-1. For each virus, three monkeys each were inoculated with 2 × 104 focus forming units by the intracerebral route or by multiple peripheral routes (intranasal, conjunctival, intramuscular, and subcutaneous; same dose in total). All BoDV-1 and VSBV-1 intracerebrally infected monkeys developed severe neurological signs around 5 to 6 or 8 to 12 weeks postinfection, respectively. Focal myoclonus and tremors were the most prominent observations in BoDV-1 and VSBV-1-infected animals. VSBV-1-infected animals also showed behavioral changes. Only one BoDV-1 peripherally infected animal developed similar disease manifestations. All animals with severe clinical disease showed high viral loads in brain tissues and displayed perivascular mononuclear cuffs with a predominance of lymphocytes and similar meningeal inflammatory infiltrates. In summary, rhesus macaques intracerebrally infected with mammalian bornaviruses develop a human-like disease and may serve as surrogate models for human bornavirus infection.

16.
Microorganisms ; 10(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208863

RESUMO

As the COVID-19 pandemic moves into its third year, there remains a need for additional animal models better recapitulating severe COVID to study SARS-CoV-2 pathogenesis and develop countermeasures, especially treatment options. Pigs are known intermediate hosts for many viruses with zoonotic potential and are susceptible to infection with alpha, beta and delta genera of coronaviruses. Herein, we infected young (3 weeks of age) pigs with SARS-CoV-2 using a combination of respiratory and parenteral inoculation routes. Pigs did not develop clinical disease, nor macroscopic or microscopic pathologic lesions upon SARS-CoV-2 infection. Despite occasional low levels of SARS-CoV-2 genomic RNA in the respiratory tract, subgenomic RNA and infectious virus were never found, and SARS-CoV-2-specific adaptive immune responses were not detectable over the 13-day study period. We concluded that pigs are not susceptible to productive SARS-CoV-2 infection and do not serve as a SARS-CoV-2 reservoir for zoonotic transmission.

17.
Antiviral Res ; 198: 105246, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032523

RESUMO

The utility of remdesivir treatment in COVID-19 patients is currently limited by the necessity to administer this antiviral intravenously, which has generally limited its use to hospitalized patients. Here, we tested a novel, subcutaneous formulation of remdesivir in the rhesus macaque model of SARS-CoV-2 infection that was previously used to establish the efficacy of remdesivir against this virus in vivo. Compared to vehicle-treated animals, macaques treated with subcutaneous remdesivir from 12 h through 6 days post inoculation showed reduced signs of respiratory disease, a reduction of virus replication in the lower respiratory tract, and an absence of interstitial pneumonia. Thus, early subcutaneous administration of remdesivir can protect from lower respiratory tract disease caused by SARS-CoV-2.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Doenças Pulmonares Intersticiais/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/uso terapêutico , Administração Cutânea , Alanina/administração & dosagem , Alanina/farmacocinética , Alanina/uso terapêutico , Animais , Antivirais/administração & dosagem , Antivirais/farmacocinética , Modelos Animais de Doenças , Feminino , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Masculino , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
18.
mBio ; 13(1): e0337921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012339

RESUMO

The ongoing pandemic of coronavirus (CoV) disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome CoV 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single-dose, fast-acting vesicular stomatitis virus (VSV)-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (i.m.) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (i.n.) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to results for control animals. While both i.m. and i.n. vaccination induced neutralizing antibody titers, only i.m. vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of i.m. vaccinated animals only. Overall, the data demonstrate that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. IMPORTANCE The vesicular stomatitis virus (VSV) vaccine platform rose to fame in 2019, when a VSV-based Ebola virus (EBOV) vaccine was approved by the European Medicines Agency and the U.S. Food and Drug Administration for human use against the deadly disease. Here, we demonstrate the protective efficacy of a VSV-EBOV-based COVID-19 vaccine against challenge in nonhuman primates (NHPs). When a single dose of the VSV-SARS2-EBOV vaccine was administered intramuscularly (i.m.), the NHPs were protected from COVID-19 within 10 days. In contrast, if the vaccine was administered intranasally, there was no benefit from the vaccine and the NHPs developed pneumonia. The i.m. vaccinated NHPs quickly developed antigen-specific IgG, including neutralizing antibodies. Transcriptional analysis highlighted the development of protective innate and adaptive immune responses in the i.m. vaccination group only.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas contra Ebola , Ebolavirus , Macaca mulatta , Estomatite Vesicular , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/uso terapêutico , Vacinas contra Ebola/genética , Vacinas contra Ebola/imunologia , Vacinas contra Ebola/uso terapêutico , Ebolavirus/genética , Ebolavirus/imunologia , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Macaca mulatta/imunologia , SARS-CoV-2 , Vacinação/métodos , Estomatite Vesicular/genética , Estomatite Vesicular/imunologia , Estomatite Vesicular/prevenção & controle , Vesiculovirus/genética
19.
Life Sci Alliance ; 5(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35039442

RESUMO

Advanced age is a key predictor of severe COVID-19. To gain insight into this relationship, we used the rhesus macaque model of SARS-CoV-2 infection. Eight older and eight younger macaques were inoculated with SARS-CoV-2. Animals were evaluated using viral RNA quantification, clinical observations, thoracic radiographs, single-cell transcriptomics, multiparameter flow cytometry, multiplex immunohistochemistry, cytokine detection, and lipidomics analysis at predefined time points in various tissues. Differences in clinical signs, pulmonary infiltrates, and virus replication were limited. Transcriptional signatures of inflammation-associated genes in bronchoalveolar lavage fluid at 3 dpi revealed efficient mounting of innate immune defenses in both cohorts. However, age-specific divergence of immune responses emerged during the post-acute phase. Older animals exhibited sustained local inflammatory innate responses, whereas local effector T-cell responses were induced earlier in the younger animals. Circulating lipid mediator and cytokine levels highlighted increased repair-associated signals in the younger animals, and persistent pro-inflammatory responses in the older animals. In summary, despite similar disease outcomes, multi-omics profiling suggests that age may delay or impair antiviral cellular immune responses and delay efficient return to immune homeostasis.


Assuntos
Envelhecimento/imunologia , COVID-19/imunologia , COVID-19/veterinária , SARS-CoV-2/imunologia , Doença Aguda , Animais , Formação de Anticorpos/imunologia , Líquido da Lavagem Broncoalveolar , COVID-19/complicações , COVID-19/genética , Citocinas/sangue , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genômica , Imunidade Celular/genética , Imunomodulação , Inflamação/complicações , Inflamação/patologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Tecido Linfoide/patologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Modelos Biológicos , Análise de Célula Única , Linfócitos T/imunologia , Transcrição Gênica
20.
PLoS Pathog ; 17(12): e1009678, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34855915

RESUMO

Kyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses. However, current animal models of KFDV pathogenesis do not accurately reproduce viral tissue tropism or clinical outcomes observed in humans. Here, we show that pigtailed macaques (Macaca nemestrina) infected with KFDV or AHFV develop viremia that peaks 2 to 4 days following inoculation. Over the course of infection, animals developed lymphocytopenia, thrombocytopenia, and elevated liver enzymes. Infected animals exhibited hallmark signs of human disease characterized by a flushed appearance, piloerection, dehydration, loss of appetite, weakness, and hemorrhagic signs including epistaxis. Virus was commonly present in the gastrointestinal tract, consistent with human disease caused by KFDV and AHFV where gastrointestinal symptoms (hemorrhage, vomiting, diarrhea) are common. Importantly, RNAseq of whole blood revealed that KFDV downregulated gene expression of key clotting factors that was not observed during AHFV infection, consistent with increased severity of KFDV disease observed in this model. This work characterizes a nonhuman primate model for KFDV and AHFV that closely resembles human disease for further utilization in understanding host immunity and development of antiviral countermeasures.


Assuntos
Modelos Animais de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/virologia , Febres Hemorrágicas Virais/virologia , Macaca nemestrina , Animais , Chlorocebus aethiops , Citocinas/sangue , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/patologia , Feminino , Células HEK293 , Febres Hemorrágicas Virais/imunologia , Febres Hemorrágicas Virais/patologia , Humanos , Linfonodos/virologia , Células Vero , Viremia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA