Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inflammopharmacology ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134818

RESUMO

Ulcerative colitis (UC) is an idiopathic, chronic, relapsing inflammatory bowel disease (IBD), characterized by chronic inflammation of the gastrointestinal tract. The pathophysiology of UC is complicated and involves several factors including immune, genetic, and environmental factors. Recently, a huge amount of research has concentrated on the role of interleukins including interleukin-6 (IL-6) in its pathophysiology. Thus, this study aims to examine the colo-protective and immunomodulatory effect of Tocilizumab (TCZ) in an experimental model of dextran sulfate sodium (DSS) induced UC. In the current study, we analyzed the inflammatory, immunomodulatory, apoptotic, autophagy, and endoplasmic reticulum (ER) stress markers and other clinical features including stool consistency, rectal bleeding, and edema markers in rats. Our results showed that induction of colitis caused bloody diarrhea and increased IL-6 levels. Treatment with TCZ significantly ameliorated DSS-induced injury via decreasing inflammatory markers of colon injury (IL-6), signal transducer and activator of transcription-3 (STAT-3), and C-reactive protein (CRP). Furthermore, TCZ attenuated the apoptotic marker (caspase-3), and down-regulated endoplasmic reticulum stress sensor proteins (inositol- requiring transmembrane kinase endonuclease-1 (IRE-1) and activated transcription factor-6 (ATF-6)) and autophagy proteins (autophagy-related 16-like protein 1 (ATG16L1) and nucleotide-binding oligomerization domain-containing protein-2 (NOD2)), as compared to DSS group. Altogether, the current data suggest TCZ to be a promising protective therapy against UC.

2.
Pharmacol Rep ; 75(5): 1045-1065, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37587394

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently regarded as the twenty-first century's plague accounting for coronavirus disease 2019 (COVID-19). Besides its reported symptoms affecting the respiratory tract, it was found to alter several metabolic pathways inside the body. Nanoparticles proved to combat viral infections including COVID-19 to demonstrate great success in developing vaccines based on mRNA technology. However, various types of nanoparticles can affect the host metabolome. Considering the increasing proportion of nano-based vaccines, this review compiles and analyses how COVID-19 and nanoparticles affect lipids, amino acids, and carbohydrates metabolism. A search was conducted on PubMed, ScienceDirect, Web of Science for available information on the interrelationship between metabolomics and immunity in the context of SARS-CoV-2 infection and the effect of nanoparticles on metabolite levels. It was clear that SARS-CoV-2 disrupted several pathways to ensure a sufficient supply of its building blocks to facilitate its replication. Such information can help in developing treatment strategies against viral infections and COVID-19 based on interventions that overcome these metabolic changes. Furthermore, it showed that even drug-free nanoparticles can exert an influence on biological systems as evidenced by metabolomics.

3.
Expert Opin Drug Deliv ; 20(12): 1859-1873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37357778

RESUMO

OBJECTIVES: Oxaliplatin induces chemobrain in cancer patients/survivors. Nutraceutical naringin has antioxidant and anti-inflammatory properties with low oral bioavailability. Our aim was to formulate naringin in chitosan nanoparticles for nose to brain delivery and assess its neuroprotective effect against oxaliplatin-induced chemobrain in rats. METHODS: Naringin chitosan nanoparticles were prepared by ionic gelation. Rats were administered oral naringin (80 mg/kg), intranasal naringin (0.3 mg/kg) or intranasal naringin-loaded chitosan nanoparticles (0.3 mg/kg). Naringin's neuroprotective efficacy was assessed based on behavioral tests, histopathology, and measuring oxidative stress and inflammatory markers. RESULTS: Selected nanoparticles formulation showed drug loading of 5%, size of 150 nm and were cationic. Intranasal naringin administration enhanced memory function, inhibited hippocampal acetylcholinesterase activity, and corrected oxaliplatin-induced histological changes. Moreover, it reduced malondialdehyde and elevated reduced glutathione hippocampal levels. Furthermore, it decreased levels of inflammatory markers: NF-kB and TNF-α by 1.25-fold. Upstream to this inflammatory status, intranasal naringin downregulated the hippocampal protein levels of two pathways: cGAS/STING and HMGB1/RAGE/TLR2/MYD88. CONCLUSION: Intranasal naringin-loaded chitosan nanoparticles showed superior amelioration of oxaliplatin-induced chemobrain in rats at a dose 267-fold lower to that administered orally. The potential involvement of cGAS/STING and HMGB1/RAGE/TLR2/MYD88 pathways in the mechanistic process of either oxaliplatin-induced chemobrain or naringin-mediated neuroprotection was evidenced.


Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia , Quitosana , Proteína HMGB1 , Nanopartículas , Humanos , Ratos , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Oxaliplatina/metabolismo , Oxaliplatina/farmacologia , Receptor 2 Toll-Like/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Comprometimento Cognitivo Relacionado à Quimioterapia/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , Administração Intranasal
4.
Artigo em Inglês | MEDLINE | ID: mdl-25689821

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder with a wide spectrum of cognitive, behavioral and motor abnormalities. The mitochondrial toxin 3-nitropropionic acid (3-NP) effectively induces specific behavioral changes and selective striatal lesions similar to that observed in HD. Some neurosteroids, synthesized in neurons and glial cells, previously showed neuroprotective abilities. 5-Androstene-3ß-17ß-diol (ADIOL) is a major metabolite of dehydroepiandrosterone (DHEA) with previously reported anti-inflammatory, anti-apoptotic and neuroprotective activities. The neuroprotective potential of ADIOL in HD was not previously investigated. Therefore, the present study investigated the neuroprotective effects of ADIOL against 3-NP-induced behavioral changes, oxidative stress, inflammation and apoptosis. Intraperitoneal administration of 3-NP (20mg/kg) for 4 consecutive days in rats caused significant loss in body weight, reduced prepulse inhibition (PPI) of acoustic startle response, locomotor hypoactivity with altered cortical/striatal histological structure, increased cortical/striatal oxidative stress, inflammation and apoptosis. Administration of ADIOL (25mg/kg, s.c.) for two days before 3-NP significantly attenuated the reduction in body weights and PPI, increased locomotor activity and restored cortical/striatal histological structure nearly to normal. Moreover, it displayed anti-oxidant, anti-inflammatory and anti-apoptotic activities as evidenced by the elevation of cortical and striatal reduced glutathione levels, reductions of cortical and striatal malondialdehyde, striatal tumor necrosis factor alpha and interleukin-6 levels. Only a small number of iNOS and caspase-3 positive cells were detected in sections from rats pretreated with ADIOL. This study suggests a potential neuroprotective role of ADIOL against 3-NP-induced Huntington's disease-like manifestations. Such neuroprotection can be attributed to its anti-oxidant, anti-inflammatory and anti-apoptotic activities.


Assuntos
Androstenodiona/uso terapêutico , Antioxidantes/uso terapêutico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Neurotoxinas/toxicidade , Nitrocompostos/toxicidade , Propionatos/toxicidade , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Caspase 3/metabolismo , Catalase/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Glutationa/metabolismo , Masculino , Malondialdeído/metabolismo , Atividade Motora/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Reflexo de Sobressalto/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA