Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38512059

RESUMO

Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.


Assuntos
Centríolos , Centrossomo , Transporte Biológico , Microtúbulos , Fuso Acromático , Cílios , Humanos , Animais , Dineínas
2.
Curr Biol ; 33(19): 4202-4216.e9, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729913

RESUMO

Proper centrosome number and function relies on the accurate assembly of centrioles, barrel-shaped structures that form the core duplicating elements of the organelle. The growth of centrioles is regulated in a cell cycle-dependent manner; while new daughter centrioles elongate during the S/G2/M phase, mature mother centrioles maintain their length throughout the cell cycle. Centriole length is controlled by the synchronized growth of the microtubules that ensheathe the centriole barrel. Although proteins exist that target the growing distal tips of centrioles, such as CP110 and Cep97, these proteins are generally thought to suppress centriolar microtubule growth, suggesting that distal tips may also contain unidentified counteracting factors that facilitate microtubule polymerization. Currently, a mechanistic understanding of how distal tip proteins balance microtubule growth and shrinkage to either promote daughter centriole elongation or maintain centriole length is lacking. Using a proximity-labeling screen in Drosophila cells, we identified Cep104 as a novel component of a group of evolutionarily conserved proteins that we collectively refer to as the distal tip complex (DTC). We found that Cep104 regulates centriole growth and promotes centriole elongation through its microtubule-binding TOG domain. Furthermore, analysis of Cep104 null flies revealed that Cep104 and Cep97 cooperate during spermiogenesis to align spermatids and coordinate individualization. Lastly, we mapped the complete DTC interactome and showed that Cep97 is the central scaffolding unit required to recruit DTC components to the distal tip of centrioles.


Assuntos
Centríolos , Proteínas Associadas aos Microtúbulos , Masculino , Animais , Centríolos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Drosophila/metabolismo , Centrossomo/metabolismo , Espermatogênese , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
J Cell Biol ; 221(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35929834

RESUMO

Centrosome positioning is essential for their function. Typically, centrosomes are transported to various cellular locations through the interaction of centrosomal microtubules (MTs) with motor proteins anchored at the cortex or the nuclear surface. However, it remains unknown how centrioles migrate in cellular contexts in which they do not nucleate MTs. Here, we demonstrate that during interphase, inactive centrioles move directly along the interphase MT network as Kinesin-1 cargo. We identify Pericentrin-Like-Protein (PLP) as a novel Kinesin-1 interacting molecule essential for centriole motility. In vitro assays show that PLP directly interacts with the cargo binding domain of Kinesin-1, allowing PLP to migrate on MTs. Binding assays using purified proteins revealed that relief of Kinesin-1 autoinhibition is critical for its interaction with PLP. Finally, our studies of neural stem cell asymmetric divisions in the Drosophila brain show that the PLP-Kinesin-1 interaction is essential for the timely separation of centrioles, the asymmetry of centrosome activity, and the age-dependent centrosome inheritance.


Assuntos
Antígenos , Centríolos , Cinesinas , Animais , Antígenos/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Células-Tronco Neurais , Transporte Proteico
4.
J Dev Biol ; 6(2)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29615558

RESUMO

Spindly was originally identified as a specific regulator of Dynein activity at the kinetochore. In early prometaphase, Spindly recruits the Dynein/Dynactin complex, promoting the establishment of stable kinetochore-microtubule interactions and progression into anaphase. While details of Spindly function in mitosis have been worked out in cultured human cells and in the C. elegans zygote, the function of Spindly within the context of an organism has not yet been addressed. Here, we present loss- and gain-of-function studies of Spindly using transgenic RNAi in Drosophila. Knock-down of Spindly in the female germ line results in mitotic arrest during embryonic cleavage divisions. We investigated the requirements of Spindly protein domains for its localisation and function, and found that the carboxy-terminal region controls Spindly localisation in a cell-type specific manner. Overexpression of Spindly in the female germ line is embryonic lethal and results in altered egg morphology. To determine whether Spindly plays a role in post-mitotic cells, we altered Spindly protein levels in migrating cells and found that ovarian border cell migration is sensitive to the levels of Spindly protein. Our study uncovers novel functions of Spindly and a differential, functional requirement for its carboxy-terminal region in Drosophila.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA