Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Mol Ther Nucleic Acids ; 35(2): 102202, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38846999

RESUMO

Splicing factor 3b subunit 1 (SF3B1) is the largest subunit and core component of the spliceosome. Inhibition of SF3B1 was associated with an increase in broad intron retention (IR) on most transcripts, suggesting that IR can be used as a marker of spliceosome inhibition in chronic lymphocytic leukemia (CLL) cells. Furthermore, we separately analyzed exonic and intronic mapped reads on annotated RNA-sequencing transcripts obtained from B cells (n = 98 CLL patients) and healthy volunteers (n = 9). We measured intron/exon ratio to use that as a surrogate for alternative RNA splicing (ARS) and found that 66% of CLL-B cell transcripts had significant IR elevation compared with normal B cells (NBCs) and that correlated with mRNA downregulation and low expression levels. Transcripts with the highest IR levels belonged to biological pathways associated with gene expression and RNA splicing. A >2-fold increase of active pSF3B1 was observed in CLL-B cells compared with NBCs. Additionally, when the CLL-B cells were treated with macrolides (pladienolide-B), a significant decrease in pSF3B1, but not total SF3B1 protein, was observed. These findings suggest that IR/ARS is increased in CLL, which is associated with SF3B1 phosphorylation and susceptibility to SF3B1 inhibitors. These data provide additional support to the relevance of ARS in carcinogenesis and evidence of pSF3B1 participation in this process.

2.
iScience ; 27(5): 109752, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38699227

RESUMO

Breast cancers (BRCA) exhibit substantial transcriptional heterogeneity, posing a significant clinical challenge. The global transcriptional changes in a disease context, however, are likely mediated by few key genes which reflect disease etiology better than the differentially expressed genes (DEGs). We apply our network-based tool PathExt to 1,059 BRCA tumors across 4 subtypes to identify key mediator genes in each subtype. Compared to conventional differential expression analysis, PathExt-identified genes exhibit greater concordance across tumors, revealing shared and subtype-specific biological processes; better recapitulate BRCA-associated genes in multiple benchmarks, and are more essential in BRCA subtype-specific cell lines. Single-cell transcriptomic analysis reveals a subtype-specific distribution of PathExt-identified genes in multiple cell types from the tumor microenvironment. Application of PathExt to a TNBC chemotherapy response dataset identified subtype-specific key genes and biological processes associated with resistance. We described putative drugs that target key genes potentially mediating drug resistance.

3.
bioRxiv ; 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37781626

RESUMO

Background: Tumors are characterized by global changes in epigenetic changes such as DNA methylation and histone modifications that are functionally linked to tumor progression. Accordingly, several drugs targeting the epigenome have been proposed for cancer therapy, notably, histone deacetylase inhibitors (HDACi) such as Vorinostatis and DNA methyltransferase inhibitors (DNMTi) such as Zebularine. However, a fundamental challenge with such approaches is the lack of genomic specificity, i.e., the transcriptional changes at different genomic loci can be highly variable thus making it difficult to predict the consequences on the global transcriptome and drug response. For instance, treatment with DNMTi may upregulate the expression of not only a tumor suppressor but also an oncogene leading to unintended adverse effect. Methods: Given the pre-treatment transcriptome and epigenomic profile of a sample, we assessed the extent of predictability of locus-specific changes in gene expression upon treatment with HDACi using machine learning. Results: We found that in two cell lines (HCT116 treated with Largazole at 8 doses and RH4 treated with Entinostat at 1µM) where the appropriate data (pre-treatment transcriptome and epigenome as well as post-treatment transcriptome) is available, our model distinguished the post-treatment up versus downregulated genes with high accuracy (up to ROC of 0.89). Furthermore, a model trained on one cell line is applicable to another cell line suggesting generalizability of the model. Conclusions: Here we present a first assessment of the predictability of genome-wide transcriptomic changes upon treatment with HDACi. Lack of appropriate omics data from clinical trials of epigenetic drugs currently hampers the assessment of applicability of our approach in clinical setting.

4.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37425784

RESUMO

Breast cancers exhibit substantial transcriptional heterogeneity, posing a significant challenge to the prediction of treatment response and prognostication of outcomes. Especially, translation of TNBC subtypes to the clinic remains a work in progress, in part because of a lack of clear transcriptional signatures distinguishing the subtypes. Our recent network-based approach, PathExt, demonstrates that global transcriptional changes in a disease context are likely mediated by a small number of key genes, and these mediators may better reflect functional or translationally relevant heterogeneity. We apply PathExt to 1059 BRCA tumors and 112 healthy control samples across 4 subtypes to identify frequent, key-mediator genes in each BRCA subtype. Compared to conventional differential expression analysis, PathExt-identified genes (1) exhibit greater concordance across tumors, revealing shared as well as BRCA subtype-specific biological processes, (2) better recapitulate BRCA-associated genes in multiple benchmarks, and (3) exhibit greater dependency scores in BRCA subtype-specific cancer cell lines. Single cell transcriptomes of BRCA subtype tumors reveal a subtype-specific distribution of PathExt-identified genes in multiple cell types from the tumor microenvironment. Application of PathExt to a TNBC chemotherapy response dataset identified TNBC subtype-specific key genes and biological processes associated with resistance. We described putative drugs that target top novel genes potentially mediating drug resistance. Overall, PathExt applied to breast cancer refines previous views of gene expression heterogeneity and identifies potential mediators of TNBC subtypes, including potential therapeutic targets.

5.
Heliyon ; 9(8): e18211, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520992

RESUMO

Transcription factors (TFs) and their binding sites have evolved to interact cooperatively or competitively with each other. Here we examine in detail, across multiple cell lines, such cooperation or competition among TFs both in sequential and spatial proximity (using chromatin conformation capture assays), considering in vivo binding data as well as TF binding motifs in DNA. We ascertain significantly co-occurring ("attractive") or avoiding ("repulsive") TF pairs using robust randomized models that retain the essential characteristics of the experimental data. Across human cell lines TFs organize into two groups, with intra-group attraction and inter-group repulsion. This is true for both sequential and spatial proximity, and for both in vivo binding and sequence motifs. Attractive TF pairs exhibit significantly more physical interactions suggesting an underlying mechanism. The two TF groups differ significantly in their genomic and network properties, as well in their function-while one group regulates housekeeping function, the other potentially regulates lineage-specific functions, that are disrupted in cancer. Weaker binding sites tend to occur in spatially interacting regions of the genome. Our results suggest that a complex pattern of spatial cooperativity of TFs and chromatin has evolved with the genome to support housekeeping and lineage-specific functions.

6.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333132

RESUMO

Intratumoral heterogeneity (ITH) can promote cancer progression and treatment failure, but the complexity of the regulatory programs and contextual factors involved complicates its study. To understand the specific contribution of ITH to immune checkpoint blockade (ICB) response, we generated single cell-derived clonal sublines from an ICB-sensitive and genetically and phenotypically heterogeneous mouse melanoma model, M4. Genomic and single cell transcriptomic analyses uncovered the diversity of the sublines and evidenced their plasticity. Moreover, a wide range of tumor growth kinetics were observed in vivo , in part associated with mutational profiles and dependent on T cell-response. Further inquiry into melanoma differentiation states and tumor microenvironment (TME) subtypes of untreated tumors from the clonal sublines demonstrated correlations between highly inflamed and differentiated phenotypes with the response to anti-CTLA-4 treatment. Our results demonstrate that M4 sublines generate intratumoral heterogeneity at both levels of intrinsic differentiation status and extrinsic TME profiles, thereby impacting tumor evolution during therapeutic treatment. These clonal sublines proved to be a valuable resource to study the complex determinants of response to ICB, and specifically the role of melanoma plasticity in immune evasion mechanisms.

7.
Pharmacol Ther ; 248: 108466, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301330

RESUMO

Melanoma, the cancer of the melanocyte, is the deadliest form of skin cancer with an aggressive nature, propensity to metastasize and tendency to resist therapeutic intervention. Studies have identified that the re-emergence of developmental pathways in melanoma contributes to melanoma onset, plasticity, and therapeutic response. Notably, it is well known that noncoding RNAs play a critical role in the development and stress response of tissues. In this review, we focus on the noncoding RNAs, including microRNAs, long non-coding RNAs, circular RNAs, and other small RNAs, for their functions in developmental mechanisms and plasticity, which drive onset, progression, therapeutic response and resistance in melanoma. Going forward, elucidation of noncoding RNA-mediated mechanisms may provide insights that accelerate development of novel melanoma therapies.


Assuntos
Melanoma , MicroRNAs , RNA Longo não Codificante , Humanos , RNA não Traduzido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , RNA Longo não Codificante/genética , RNA Circular
8.
STAR Protoc ; 4(2): 102297, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37167059

RESUMO

Single-cell sequencing is a powerful technology to understand the heterogeneity of clinical biospecimens. Here, we present a protocol for obtaining single-cell suspension from neurofibromatosis type 1-associated nerve sheath tumors for transcriptomic profiling on the 10x platform. We describe steps for clinical sample collection, generation of single-cell suspension, and cell capture and sequencing. We then detail methods for integrative analysis, developmental Schwann cell trajectory building using bioinformatic tools, and comparative analysis. This protocol can be adapted for single-cell sequencing using mouse nerve tumors. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.

10.
Cancers (Basel) ; 15(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046820

RESUMO

While much of the research in oncogenesis and cancer therapy has focused on mutations in key cancer driver genes, more recent work suggests a complementary non-genetic paradigm. This paradigm focuses on how transcriptional and phenotypic heterogeneity, even in clonally derived cells, can create sub-populations associated with oncogenesis, metastasis, and therapy resistance. We discuss this complementary paradigm in the context of pancreatic ductal adenocarcinoma. A better understanding of cellular transcriptional heterogeneity and its association with oncogenesis can lead to more effective therapies that prevent tumor initiation and slow progression.

11.
J Transl Med ; 21(1): 209, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36941605

RESUMO

BACKGROUND: Previous investigations of transcriptomic signatures of cancer patient survival and post-therapy relapse have focused on tumor tissue. In contrast, here we show that in colorectal cancer (CRC) transcriptomes derived from normal tissues adjacent to tumors (NATs) are better predictors of relapse. RESULTS: Using the transcriptomes of paired tumor and NAT specimens from 80 Korean CRC patients retrospectively determined to be in recurrence or nonrecurrence states, we found that, when comparing recurrent with nonrecurrent samples, NATs exhibit a greater number of differentially expressed genes (DEGs) than tumors. Training two prognostic elastic net-based machine learning models-NAT-based and tumor-based in our Samsung Medical Center (SMC) cohort, we found that NAT-based model performed better in predicting the survival when the model was applied to the tumor-derived transcriptomes of an independent cohort of 450 COAD patients in TCGA. Furthermore, compositions of tumor-infiltrating immune cells in NATs were found to have better prognostic capability than in tumors. We also confirmed through Cox regression analysis that in both SMC-CRC as well as in TCGA-COAD cohorts, a greater proportion of genes exhibited significant hazard ratio when NAT-derived transcriptome was used compared to when tumor-derived transcriptome was used. CONCLUSIONS: Taken together, our results strongly suggest that NAT-derived transcriptomes and immune cell composition of CRC are better predictors of patient survival and tumor recurrence than the primary tumor.


Assuntos
Neoplasias Colorretais , Transcriptoma , Humanos , Transcriptoma/genética , Estudos Retrospectivos , Neoplasias Colorretais/patologia , Recidiva Local de Neoplasia/genética , Perfilação da Expressão Gênica , Prognóstico
12.
Sci Adv ; 9(7): eadd2911, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791193

RESUMO

Advanced human cognition is attributed to increased neocortex size and complexity, but the underlying evolutionary and regulatory mechanisms are largely unknown. Using human and macaque embryonic neocortical H3K27ac data coupled with a deep learning model of enhancers, we identified ~4000 enhancer gains in humans, which, per our model, can often be attributed to single-nucleotide essential mutations. Our analyses suggest that functional gains in embryonic brain development are associated with de novo enhancers whose putative target genes exhibit increased expression in progenitor cells and interneurons and partake in critical neural developmental processes. Essential mutations alter enhancer activity through altered binding of key transcription factors (TFs) of embryonic neocortex, including ISL1, POU3F2, PITX1/2, and several SOX TFs, and are associated with central nervous system disorders. Overall, our results suggest that essential mutations lead to gain of embryonic neocortex enhancers, which orchestrate expression of genes involved in critical developmental processes associated with human cognition.


Assuntos
Elementos Facilitadores Genéticos , Nucleotídeos , Humanos , Fatores de Transcrição/genética , Encéfalo , Mutação , Regulação da Expressão Gênica no Desenvolvimento
13.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36789425

RESUMO

The immune state of tumor microenvironment is crucial for determining immunotherapy response but is not readily accessible. Here we investigate if we can infer the tumor immune state from the blood and further predict immunotherapy response. First, we analyze a dataset of head and neck squamous cell carcinoma (HNSCC) patients with matched scRNA-Seq of peripheral blood mononuclear cells (PBMCs) and tumor tissues. We find that the tumor immune cell fractions of different immune cell types and many of the genes they express can be inferred from the matched PBMC scRNA-Seq. Second, analyzing another HNSCC dataset with PBMC scRNA-Seq and immunotherapy response, we find that the inferred ratio between tumor memory B and regulatory T cell fractions is predictive of immunotherapy response and is superior to the well-established cytolytic and exhausted T-cell signatures. Overall, these results showcase the potential of scRNA-Seq liquid biopsies in cancer immunotherapy, calling for their larger-scale testing. Significance: This head and neck cancer study demonstrates the potential of using blood single-cell transcriptomics to (1) infer the tumor immune status and (2) predict immunotherapy response from the tumor immune status inferred from blood. These results showcase the potential of single-cell transcriptomics liquid biopsies for further advancing personalized cancer immunotherapy.

14.
Nat Commun ; 13(1): 7664, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509773

RESUMO

Oncogenesis mimics key aspects of embryonic development. However, the underlying mechanisms are incompletely understood. Here, we demonstrate that the splicing events specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. Such events are associated with key oncogenic processes and predict proliferation rates in cancer cell lines as well as patient survival. Such events preferentially target nitrosylation and transmembrane-region domains, whose coordinated splicing in multiple genes respectively affect intracellular transport and N-linked glycosylation. We infer critical splicing factors potentially regulating embryonic splicing events and show that such factors are potential oncogenic drivers and are upregulated specifically in malignant cells. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of critical splicing factors in brain and liver. Our study provides a comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest anti-cancer targets including splicing events, and their upstream splicing and transcriptional regulators.


Assuntos
Processamento Alternativo , Neoplasias , Humanos , Processamento Alternativo/genética , Splicing de RNA/genética , Neoplasias/genética , Transformação Celular Neoplásica , Fatores de Processamento de RNA/genética
15.
Nat Rev Cancer ; 22(11): 625-639, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36064595

RESUMO

Historically, the primary focus of cancer research has been molecular and clinical studies of a few essential pathways and genes. Recent years have seen the rapid accumulation of large-scale cancer omics data catalysed by breakthroughs in high-throughput technologies. This fast data growth has given rise to an evolving concept of 'big data' in cancer, whose analysis demands large computational resources and can potentially bring novel insights into essential questions. Indeed, the combination of big data, bioinformatics and artificial intelligence has led to notable advances in our basic understanding of cancer biology and to translational advancements. Further advances will require a concerted effort among data scientists, clinicians, biologists and policymakers. Here, we review the current state of the art and future challenges for harnessing big data to advance cancer research and treatment.


Assuntos
Pesquisa Biomédica , Neoplasias , Humanos , Inteligência Artificial , Biologia Computacional , Proteômica , Pesquisa Translacional Biomédica , Neoplasias/genética
16.
iScience ; 25(9): 104962, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36060076

RESUMO

Our understanding of miRNA activity at cellular resolution is thwarted by the inability of standard scRNA-seq protocols to capture miRNAs. We introduce a novel tool, miRSCAPE, to infer miRNA expression in a sample from its RNA-seq profile. We establish miRSCAPE's accuracy in 10 tumor and normal cohorts demonstrating its superiority over alternatives. miRSCAPE accurately infers cell type-specific miRNA activities (predicted versus observed fold-difference correlation ∼0.81) in two independent scRNA-seq datasets. We apply miRSCAPE to infer miRNA activities in scRNA clusters in pancreatic and lung adenocarcinomas, as well as in 56 cell types in the human cell landscape (HCL). In pancreatic and breast cancer scRNA-seq data, miRSCAPE recapitulates miRNAs associated with stemness and epithelial-mesenchymal transition (EMT) cell states, respectively. Overall, miRSCAPE recapitulates and refines miRNA biology at cellular resolution. miRSCAPE is freely available and is easily applicable to scRNA-seq data to infer miRNA activities at cellular resolution.

17.
Cell Rep ; 40(12): 111363, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130486

RESUMO

Loss-of-function mutations in the polycomb repressive complex 2 (PRC2) occur frequently in malignant peripheral nerve sheath tumor, an aggressive sarcoma that arises from NF1-deficient Schwann cells. To define the oncogenic mechanisms underlying PRC2 loss, we use engineered cells that dynamically reassemble a competent PRC2 coupled with single-cell sequencing from clinical samples. We discover a two-pronged oncogenic process: first, PRC2 loss leads to remodeling of the bivalent chromatin and enhancer landscape, causing the upregulation of developmentally regulated transcription factors that enforce a transcriptional circuit serving as the cell's core vulnerability. Second, PRC2 loss reduces type I interferon signaling and antigen presentation as downstream consequences of hyperactivated Ras and its cross talk with STAT/IRF transcription factors. Mapping of the transcriptional program of these PRC2-deficient tumor cells onto a constructed developmental trajectory of normal Schwann cells reveals that changes induced by PRC2 loss enforce a cellular profile characteristic of a primitive mesenchymal neural crest stem cell.


Assuntos
Interferon Tipo I , Neurofibrossarcoma , Carcinogênese , Cromatina , Humanos , Fatores Reguladores de Interferon/genética , Interferon Tipo I/genética , Neurofibrossarcoma/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
18.
Sci Adv ; 8(31): eabj7176, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921407

RESUMO

Cancer is a predominant disease across animals. We applied a comparative genomics approach to systematically characterize genes whose conservation levels correlate positively (PC) or negatively (NC) with cancer resistance estimates across 193 vertebrates. Pathway analysis reveals that NC genes are enriched for metabolic functions and PC genes in cell cycle regulation, DNA repair, and immune response, pointing to their corresponding roles in mediating cancer risk. We find that PC genes are less tolerant to loss-of-function (LoF) mutations, are enriched in cancer driver genes, and are associated with germline mutations that increase human cancer risk. Their relevance to cancer risk is further supported via the analysis of mouse functional genomics and cancer mortality of zoo mammals' data. In sum, our study describes a cross-species genomic analysis pointing to candidate genes that may mediate human cancer risk.


Assuntos
Genômica , Neoplasias , Animais , Humanos , Mutação com Perda de Função , Mamíferos , Camundongos , Neoplasias/genética
19.
Front Immunol ; 13: 918817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844595

RESUMO

Most transcriptomic studies of SARS-CoV-2 infection have focused on differentially expressed genes, which do not necessarily reveal the genes mediating the transcriptomic changes. In contrast, exploiting curated biological network, our PathExt tool identifies central genes from the differentially active paths mediating global transcriptomic response. Here we apply PathExt to multiple cell line infection models of SARS-CoV-2 and other viruses, as well as to COVID-19 patient-derived PBMCs. The central genes mediating SARS-CoV-2 response in cell lines were uniquely enriched for ATP metabolic process, G1/S transition, leukocyte activation and migration. In contrast, PBMC response reveals dysregulated cell-cycle processes. In PBMC, the most frequently central genes are associated with COVID-19 severity. Importantly, relative to differential genes, PathExt-identified genes show greater concordance with several benchmark anti-COVID-19 target gene sets. We propose six novel anti-SARS-CoV-2 targets ADCY2, ADSL, OCRL, TIAM1, PBK, and BUB1, and potential drugs targeting these genes, such as Bemcentinib, Phthalocyanine, and Conivaptan.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/genética , Linhagem Celular , Humanos , Leucócitos Mononucleares , Transcriptoma
20.
Res Sq ; 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35434729

RESUMO

Most transcriptomic studies of SARS-CoV-2 infection have focused on differentially expressed genes, which do not necessarily reveal the genes mediating the transcriptomic changes. In contrast, exploiting curated biological network, our PathExt tool identifies central genes from the differentially active paths mediating global transcriptomic response. Here we apply PathExt to multiple cell line infection models of SARS-CoV-2 and other viruses, as well as to COVID-19 patient-derived PBMCs. The central genes mediating SARS-CoV-2 response in cell lines were uniquely enriched for ATP metabolic process, G1/S transition, leukocyte activation and migration. In contrast, PBMC response reveals dysregulated cell-cycle processes. In PBMC, the most frequently central genes are associated with COVID-19 severity. Importantly, relative to differential genes, PathExt-identified genes show greater concordance with several benchmark anti-COVID-19 target gene sets. We propose six novel anti-SARS-CoV-2 targets ADCY2, ADSL, OCRL, TIAM1, PBK, and BUB1, and potential drugs targeting these genes, such as Bemcentinib, Phthalocyanine, and Conivaptan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA