Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
mSystems ; 7(5): e0036422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36000724

RESUMO

Features of the airway microbiome in persons with cystic fibrosis (pwCF) are correlated with disease progression. Microbes have traditionally been classified for their ability to tolerate oxygen. It is unknown whether supplemental oxygen, a common medical intervention, affects the airway microbiome of pwCF. We hypothesized that hyperoxia significantly impacts the pulmonary microbiome in cystic fibrosis. In this study, we cultured spontaneously expectorated sputum from pwCF in artificial sputum medium under 21%, 50%, and 100% oxygen conditions using a previously validated model system that recapitulates microbial community composition in uncultured sputum. Culture aliquots taken at 24, 48, and 72 h, along with uncultured sputum, underwent shotgun metagenomic sequencing with absolute abundance values obtained with the use of spike-in bacteria. Raw sequencing files were processed using the bioBakery pipeline to determine changes in taxonomy, predicted function, antimicrobial resistance genes, and mobile genetic elements. Hyperoxia reduced absolute microbial load, species richness, and diversity. Hyperoxia reduced absolute abundance of specific microbes, including facultative anaerobes such as Rothia and some Streptococcus species, with minimal impact on canonical CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The effect size of hyperoxia on predicted functional pathways was stronger than that on taxonomy. Large changes in microbial cooccurrence networks were noted. Hyperoxia exposure perturbs airway microbial communities in a manner well tolerated by key pathogens. Supplemental oxygen use may enable the growth of lung pathogens and should be further studied in the clinical setting. IMPORTANCE The airway microbiome in persons with cystic fibrosis (pwCF) is correlated with lung function and disease severity. Supplemental oxygen use is common in more advanced CF, yet its role in perturbing airway microbial communities is unknown. By culturing sputum samples from pwCF under normal and elevated oxygen conditions, we found that increased oxygen led to reduced total numbers and diversity of microbes, with relative sparing of common CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. Supplemental oxygen use may enable the growth of lung pathogens and should be further studied in the clinical setting.


Assuntos
Fibrose Cística , Hiperóxia , Microbiota , Infecções Estafilocócicas , Humanos , Fibrose Cística/tratamento farmacológico , Microbiota/genética , Pulmão/microbiologia , Bactérias , Pseudomonas aeruginosa , Oxigênio/uso terapêutico
3.
FEMS Microbiol Ecol ; 98(7)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35749563

RESUMO

Glacial melt-down alters hydrological and physico-chemical conditions in downstream aquatic habitats. In this study, we tested if sediment-associated microbial communities respond to the decrease of glaciers and associated meltwater flows in high-alpine lakes. We analyzed 16 lakes in forefield catchments of three glaciers in the Eastern Swiss Alps on physico-chemical and biological parameters. We compared lakes fed by glacier meltwater with hydrologically disconnected lakes, as well as "mixed" lakes that received water from both other lake types. Glacier-fed lakes had a higher turbidity (94 NTU) and conductivity (47 µS/cm), but were up to 5.2°C colder than disconnected lakes (1.5 NTU, 26 µS/cm). Nutrient concentration was low in all lakes (TN < 0.05 mg/l, TP < 0.02 mg/l). Bacterial diversity in the sediments decreased significantly with altitude. Bacterial community composition correlated with turbidity, temperature, conductivity, nitrate, and lake age and was distinctly different between glacier-fed compared to disconnected and mixed water lakes, but not between catchments. Chemoheterotrophic processes were more abundant in glacier-fed compared to disconnected and mixed water lakes where photoautotrophic processes dominated. Our study suggests that the loss of glaciers will change sediment bacterial community composition and physiology that are unique for glacier-fed lakes in mountain and polar regions.


Assuntos
Camada de Gelo , Microbiota , Bactérias/genética , Camada de Gelo/microbiologia , Lagos , Água
4.
J Vis Exp ; (174)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34424248

RESUMO

Airway microbial communities are thought to play an important role in the progression of cystic fibrosis (CF) and other chronic pulmonary diseases. Microbes have traditionally been classified based on their ability to use or tolerate oxygen. Supplemental oxygen is a common medical therapy administered to people with cystic fibrosis (pwCF); however, existing studies on oxygen and the airway microbiome have focused on how hypoxia (low oxygen) rather than hyperoxia (high oxygen) affects the predominantly aerobic and facultative anaerobic lung microbial communities. To address this critical knowledge gap, this protocol was developed using an artificial sputum medium that mimics the composition of sputum from pwCF. The use of filter sterilization, which yields a transparent medium, allows optical methods to follow the growth of single-celled microbes in suspension cultures. To create hyperoxic conditions, this model system takes advantage of established anaerobic culturing techniques to study hyperoxic conditions; instead of removing oxygen, oxygen is added to cultures by daily sparging of serum bottles with a mixture of compressed oxygen and air. Sputum from 50 pwCF underwent daily sparging for a 72-h period to verify the ability of this model to maintain differential oxygen conditions. Shotgun metagenomic sequencing was performed on cultured and uncultured sputum samples from 11 pwCF to verify the ability of this medium to support the growth of commensal and pathogenic microbes commonly found in cystic fibrosis sputum. Growth curves were obtained from 112 isolates obtained from pwCF to verify the ability of this artificial sputum medium to support the growth of common cystic fibrosis pathogens. We find that this model can culture a wide variety of pathogens and commensals in CF sputum, recovers a community highly similar to uncultured sputum under normoxic conditions, and creates different culture phenotypes under varying oxygen conditions. This new approach might lead to a better understanding of unanticipated effects induced by the use of oxygen in pwCF on airway microbial communities and common respiratory pathogens.


Assuntos
Fibrose Cística , Microbiota , Fibrose Cística/terapia , Humanos , Metagenoma , Oxigênio , Escarro
5.
Environ Microbiome ; 15(1): 3, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33902727

RESUMO

BACKGROUND: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. RESULTS: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. CONCLUSIONS: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.

6.
Front Microbiol ; 9: 1800, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154761

RESUMO

Hypersaline environments represent some of the most challenging settings for life on Earth. Extremely halophilic microorganisms have been selected to colonize and thrive in these extreme environments by virtue of a broad spectrum of adaptations to counter high salinity and osmotic stress. Although there is substantial data on microbial taxonomic diversity in these challenging ecosystems and their primary osmoadaptation mechanisms, less is known about how hypersaline environments shape the genomes of microbial inhabitants at the functional level. In this study, we analyzed the microbial communities in five ponds along the discontinuous salinity gradient from brackish to salt-saturated environments and sequenced the metagenome of the salt (halite) precipitation pond in the artisanal Cáhuil Solar Saltern system. We combined field measurements with spectrophotometric pigment analysis and flow cytometry to characterize the microbial ecology of the pond ecosystems, including primary producers and applied metagenomic sequencing for analysis of archaeal and bacterial taxonomic diversity of the salt crystallizer harvest pond. Comparative metagenomic analysis of the Cáhuil salt crystallizer pond against microbial communities from other salt-saturated aquatic environments revealed a dominance of the archaeal genus Halorubrum and showed an unexpectedly low abundance of Haloquadratum in the Cáhuil system. Functional comparison of 26 hypersaline microbial metagenomes revealed a high proportion of sequences associated with nucleotide excision repair, helicases, replication and restriction-methylation systems in all of them. Moreover, we found distinctive functional signatures between the microbial communities from salt-saturated (>30% [w/v] total salinity) compared to sub-saturated hypersaline environments mainly due to a higher representation of sequences related to replication, recombination and DNA repair in the former. The current study expands our understanding of the diversity and distribution of halophilic microbial populations inhabiting salt-saturated habitats and the functional attributes that sustain them.

7.
Geobiology ; 16(4): 353-368, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29885273

RESUMO

As a consequence of Earth's surface oxygenation, ocean geochemistry changed from ferruginous (iron(II)-rich) into more complex ferro-euxinic (iron(II)-sulphide-rich) conditions during the Paleoproterozoic. This transition must have had profound implications for the Proterozoic microbial community that existed within the ocean water and bottom sediment; in particular, iron-oxidizing bacteria likely had to compete with emerging sulphur-metabolizers. However, the nature of their coexistence and interaction remains speculative. Here, we present geochemical and microbiological data from the Arvadi Spring in the eastern Swiss Alps, a modern model habitat for ferro-euxinic transition zones in late Archean and Proterozoic oceans during high-oxygen intervals, which enables us to reconstruct the microbial community structure in respective settings for this geological era. The spring water is oxygen-saturated but still contains relatively elevated concentrations of dissolved iron(II) (17.2 ± 2.8 µM) and sulphide (2.5 ± 0.2 µM) with simultaneously high concentrations of sulphate (8.3 ± 0.04 mM). Solids consisting of quartz, calcite, dolomite and iron(III) oxyhydroxide minerals as well as sulphur-containing particles, presumably elemental S0 , cover the spring sediment. Cultivation-based most probable number counts revealed microaerophilic iron(II)-oxidizers and sulphide-oxidizers to represent the largest fraction of iron- and sulphur-metabolizers in the spring, coexisting with less abundant iron(III)-reducers, sulphate-reducers and phototrophic and nitrate-reducing iron(II)-oxidizers. 16S rRNA gene 454 pyrosequencing showed sulphide-oxidizing Thiothrix species to be the dominating genus, supporting the results from our cultivation-based assessment. Collectively, our results suggest that anaerobic and microaerophilic iron- and sulphur-metabolizers could have coexisted in oxygenated ferro-sulphidic transition zones of late Archean and Proterozoic oceans, where they would have sustained continuous cycling of iron and sulphur compounds.


Assuntos
Biota , Ecossistema , Ferro/metabolismo , Nascentes Naturais/microbiologia , Enxofre/metabolismo , Aerobiose , Anaerobiose , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Nascentes Naturais/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suíça
8.
Isotopes Environ Health Stud ; 52(1-2): 75-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25922968

RESUMO

Highly mineralized springs in the Scuol-Tarasp area of the Lower Engadin and in the Albula Valley near Alvaneu, Switzerland, display distinct differences with respect to the source and fate of their dissolved sulphur species. High sulphate concentrations and positive sulphur (δ(34)S) and oxygen (δ(18)O) isotopic compositions argue for the subsurface dissolution of Mesozoic evaporitic sulphate. In contrast, low sulphate concentrations and less positive or even negative δ(34)S and δ(18)O values indicate a substantial contribution of sulphate sulphur from the oxidation of sulphides in the crystalline basement rocks or the Jurassic sedimentary cover rocks. Furthermore, multiple sulphur (δ(34)S, Δ(33)S) isotopes support the identification of microbial sulphate reduction and sulphide oxidation in the subsurface, the latter is also evident through the presence of thick aggregates of sulphide-oxidizing Thiothrix bacteria.


Assuntos
Águas Minerais/análise , Nascentes Naturais/química , Sulfatos/metabolismo , Enxofre/metabolismo , Thiothrix/metabolismo , Sedimentos Geológicos/química , Águas Minerais/microbiologia , Nascentes Naturais/microbiologia , Isótopos de Oxigênio/análise , Isótopos de Enxofre/análise , Suíça
9.
Genome Announc ; 3(6)2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26722012

RESUMO

Here, we present the complete genome sequence of Streptomyces sp. strain CCM_MD2014 (phylum Actinobacteria), isolated from surface soil in Woods Hole, MA. Its single linear chromosome of 8,274,043 bp in length has a 72.13% G+C content and contains 6,948 coding sequences.

10.
Genome Announc ; 3(6)2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26722011

RESUMO

Here, we present the 3,443,800-bp complete genome sequence of Curtobacterium sp. strain MR_MD2014 (phylum Actinobacteria). This strain was isolated from soil in Woods Hole, MA, as part of the 2014 Microbial Diversity Summer Program at the Marine Biological Laboratory in Woods Hole, MA.

11.
Genome Announc ; 2(6)2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25395641

RESUMO

Cáhuil Lagoon in central Chile harbors distinct microbial communities in various solar salterns that are arranged as interconnected ponds with increasing salt concentrations. Here, we report the metagenome of the 3.0- to 0.2-µm fraction of the microbial community present in a crystallizer pond with 34% salinity.

12.
Appl Environ Microbiol ; 78(20): 7185-96, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865064

RESUMO

Fuschna Spring in the Swiss Alps (Engadin region) is a bicarbonate iron(II)-rich, pH-neutral mineral water spring that is dominated visually by dark green microbial mats at the side of the flow channel and orange iron(III) (oxyhydr)oxides in the flow channel. Gradients of O(2), dissolved iron(II), and bicarbonate establish in the water. Our goals were to identify the dominating biogeochemical processes and to determine to which extent changing geochemical conditions along the flow path and seasonal changes influence mineral identity, crystallinity, and microbial diversity. Geochemical analysis showed microoxic water at the spring outlet which became fully oxygenated within 2.3 m downstream. X-ray diffraction and Mössbauer spectroscopy revealed calcite (CaCO(3)) and ferrihydrite [Fe(OH)(3)] to be the dominant minerals which increased in crystallinity with increasing distance from the spring outlet. Denaturing gradient gel electrophoresis banding pattern cluster analysis revealed that the microbial community composition shifted mainly with seasons and to a lesser extent along the flow path. 16S rRNA gene sequence analysis showed that microbial communities differ between the flow channel and the flanking microbial mat. Microbial community analysis in combination with most-probable-number analyses and quantitative PCR (qPCR) showed that the mat was dominated by cyanobacteria and the channel was dominated by microaerophilic Fe(II) oxidizers (1.97 × 10(7) ± 4.36 × 10(6) 16S rRNA gene copies g(-1) using Gallionella-specific qPCR primers), while high numbers of Fe(III) reducers (10(9) cells/g) were identified in both the mat and the flow channel. Phototrophic and nitrate-reducing Fe(II) oxidizers were present as well, although in lower numbers (10(3) to 10(4) cells/g). In summary, our data suggest that mainly seasonal changes caused microbial community shifts, while geochemical gradients along the flow path influenced mineral crystallinity.


Assuntos
Biota , Carbonatos/análise , Fontes Termais/química , Fontes Termais/microbiologia , Ferro/análise , Águas Minerais/análise , Águas Minerais/microbiologia , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Oxigênio/análise , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA , Espectroscopia de Mossbauer , Suíça , Difração de Raios X
13.
J Biol Chem ; 279(49): 50662-9, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15371444

RESUMO

Various mechanisms have been proposed to explain the biological dissimilatory reduction of selenite (SeO3(2-)) to elemental selenium (Se(o)), although none is without controversy. Glutathione, the most abundant thiol in the eukaryotic cells, the cyanobacteria, and the alpha, beta, and gamma groups of the proteobacteria, has long been suspected to be involved in selenium metabolism. Experiments with the phototrophic alpha proteobacterium Rhodospirillum rubrum showed that the rate of selenite reduction was decreased when bacteria synthesized lower than normal levels of glutathione, and in Rhodobacter sphaeroides and Escherichia coli the reaction was reported to induce glutathione reductase. In the latter organism superoxide dismutase was also induced in cells grown in the presence of selenite, indicating that superoxide anions (O2-) were produced. These observations led us to investigate the abiotic (chemical) reduction of selenite by glutathione and to compare the features of this reaction with those of the reaction mediated by R. rubrum and E. coli. Our findings imply that selenite was first reduced to selenodiglutathione, which reached its maximum concentration within the 1st min of the reaction. Formation of selenodiglutathione was paralleled by a rapid reduction of cytochrome c, a known oxidant for superoxide anions. Cytochrome c reduction was inhibited by superoxide dismutase, indicating that O2- was the source of electrons for the reduction. These results demonstrated that superoxide was produced in the abiotic reduction of selenite with glutathione, thus lending support to the hypothesis that glutathione may be involved in the reaction mediated by R. rubrum and E. coli. The second phase of the reaction, which led to the formation of elemental selenium (Se(o)), developed more slowly. Se(o) precipitation reached a maximum within 2 h after the beginning of the reaction. Secondary reactions leading to the degradation of the superoxide significantly decreased the yield of Se(o) in the abiotic reaction compared with that of the bacterially mediated selenite reduction. Abiotically formed selenium particles showed the same characteristic orange-red color, spherical structure, and size as particles produced by R. rubrum, again providing support for the hypothesis that glutathione is involved in the reduction of selenite to elemental selenium in this organism.


Assuntos
Escherichia coli/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Rhodospirillum rubrum/metabolismo , Selenito de Sódio/química , Citocromos c/metabolismo , Glutationa/química , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/química , Cinética , Luz , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Modelos Químicos , Compostos Organosselênicos/química , Oxigênio/química , Selênio/química , Selenito de Sódio/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA