Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 4134-4143, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317439

RESUMO

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.

2.
Nat Chem ; 16(4): 499-505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307994

RESUMO

The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.

3.
Chem Sci ; 14(10): 2501-2517, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36908956

RESUMO

Photochemistry plays a significant role in shaping the chemical reaction network in the solar nebula and interstellar clouds. However, even in a simple triatomic molecule photodissociation, determination of all fragmentation processes is yet to be achieved. In this work, we present a comprehensive study of the photochemistry of H2S, derived from cutting-edge translational spectroscopy measurements of the H, S(1D) and S(1S) atom products formed by photolysis at wavelengths across the range 155-120 nm. The results provide detailed insights into the energy disposal in the SH(X), SH(A) and H2 co-fragments, and the atomisation routes leading to two H atoms along with S(3P) and S(1D) atoms. Theoretical calculations allow the dynamics of all fragmentation processes, especially the bimodal internal energy distributions in the diatomic products, to be rationalised in terms of non-adiabatic transitions between potential energy surfaces of both 1A' and 1A'' symmetry. The comprehensive picture of the wavelength-dependent (or vibronic state-dependent) photofragmentation behaviour of H2S will serve as a text-book example illustrating the importance of non-Born-Oppenheimer effects in molecular photochemistry, and the findings should be incorporated in future astrochemical modelling.

4.
J Phys Chem A ; 126(49): 9268-9275, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36450001

RESUMO

A new technique is reported to determine absolute photodissociation quantum yields, ϕdiss, in a molecular beam. The technique relies on a molecule having two available product channels, where a species in channel A can be converted photolytically to a species in channel B. The relative decrease in the species from channel A and the relative increase in species from B provide a direct measure of the relative product yield of each channel, with no external calibration required. In the event that only channels A and B exist, or at least dominate, then the sum rule ϕA + ϕB = 1 can be used to convert relative quantum yields into absolute yields. The technique is demonstrated using the well-understood and characterized photochemistry of HCHO. Formaldehyde photolysis at wavelengths near 310 nm produces either H + HCO (channel A) or H2 + CO (channel B). HCO can then be photolyzed with high efficiency into H + CO. The product state distributions for HCO from channel A, CO from channel B, and CO from the secondary HCO photolysis event are all well-known; this is not a requirement but is utilized here to demonstrate the veracity of the technique. The zero-pressure quantum yields of HCO from HCHO photolysis via the 2341 and 2151 states of HCHO are determined to be 0.66 and 0.74, respectively, which are in excellent agreement with the established quantum yields at atmospheric pressure and support the conclusion that HCHO quantum yields at these photolysis energies are not pressure dependent.

6.
J Chem Phys ; 155(20): 204303, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34852470

RESUMO

The photodissociation dynamics of jet-cooled trifluoroacetaldehyde (CF3CHO) into radical products, CF3 + HCO, was explored using velocity mapped ion imaging over the wavelength range 297.5 nm ≤λ≤ 342.8 nm (33 613-29 172 cm-1) covering the entire section of the absorption spectrum accessible with solar actinic wavelengths at the ground level. After initial excitation to the first excited singlet state, S1, the radical dissociation proceeds largely via the first excited triplet state, T1, at excitation energies above the T1 barrier. By combining velocity-mapped ion imaging with high-level theory, we place this barrier at 368.3 ± 2.4 kJ mol-1 (30 780 ± 200 cm-1). After exciting to S1 at energies below this barrier, the dissociation proceeds exclusively via the ground electronic state, S0. The dissociation threshold is determined to be 335.7 ± 1.8 kJ mol-1 (28 060 ± 150 cm-1). Using laser-induced fluorescence spectroscopy, the origin of the S1 ← S0 transition is assigned at 28 903 cm-1. The S0 dissociation channel is active at the S1 origin, but the yield significantly increases above 29 100 cm-1 due to enhanced intersystem crossing or internal conversion.

7.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930845

RESUMO

The dicarbon molecule (C2) is found in flames, comets, stars, and the diffuse interstellar medium. In comets, it is responsible for the green color of the coma, but it is not found in the tail. It has long been held to photodissociate in sunlight with a lifetime precluding observation in the tail, but the mechanism was not known. Here we directly observe photodissociation of C2 From the speed of the recoiling carbon atoms, a bond dissociation energy of 602.804(29) kJ·mol[Formula: see text] is determined, with an uncertainty comparable to its more experimentally accessible N2 and O2 counterparts. The value is within 0.03 kJ·mol-1 of high-level quantum theory. This work shows that, to break the quadruple bond of C2 using sunlight, the molecule must absorb two photons and undergo two "forbidden" transitions.

8.
J Phys Chem A ; 125(44): 9594-9608, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34709807

RESUMO

The Coulomb explosion (CE) of jet-cooled CH3I molecules using ultrashort (40 fs), nonresonant 805 nm strong-field ionization at three peak intensities (260, 650, and 1300 TW cm-2) has been investigated by multimass velocity map imaging, revealing an array of discernible fragment ions, that is, Iq+ (q ≤ 6), CHn+ (n = 0-3), CHn2+ (n = 0, 2), C3+, H+, H2+, and H3+. Complementary ab initio trajectory calculations of the CE of CH3IZ+ cations with Z ≤ 14 identify a range of behaviors. The CE of parent cations with Z = 2 and 3 can be well-described using a diatomic-like representation (as found previously) but the CE dynamics of all higher CH3IZ+ cations require a multidimensional description. The ab initio predicted Iq+ (q ≥ 3) fragment ion velocities are all at the high end of the velocity distributions measured for the corresponding Iq+ products. These mismatches are proposed as providing some of the clearest insights yet into the roles of nonadiabatic effects (and intramolecular charge transfer) in the CE of highly charged molecular cations.

9.
Nat Commun ; 12(1): 4459, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294710

RESUMO

The detailed features of molecular photochemistry are key to understanding chemical processes enabled by non-adiabatic transitions between potential energy surfaces. But even in a small molecule like hydrogen sulphide (H2S), the influence of non-adiabatic transitions is not yet well understood. Here we report high resolution translational spectroscopy measurements of the H and S(1D) photoproducts formed following excitation of H2S to selected quantum levels of a Rydberg state with 1B1 electronic symmetry at wavelengths λ ~ 139.1 nm, revealing rich photofragmentation dynamics. Analysis reveals formation of SH(X), SH(A), S(3P) and H2 co-fragments, and in the diatomic products, inverted internal state population distributions. These nuclear dynamics are rationalised in terms of vibronic and rotational dependent predissociations, with relative probabilities depending on the parent quantum level. The study suggests likely formation routes for the S atoms attributed to solar photolysis of H2S in the coma of comets like C/1995 O1 and C/2014 Q2.

10.
Nat Chem ; 12(9): 795-800, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32690894

RESUMO

Photoinduced isomerization reactions lie at the heart of many chemical processes in nature. The mechanisms of such reactions are determined by a delicate interplay of coupled electronic and nuclear dynamics occurring on the femtosecond scale, followed by the slower redistribution of energy into different vibrational degrees of freedom. Here we apply time-resolved photoelectron spectroscopy with a seeded extreme ultraviolet free-electron laser to trace the ultrafast ring opening of gas-phase thiophenone molecules following ultraviolet photoexcitation. When combined with ab initio electronic structure and molecular dynamics calculations of the excited- and ground-state molecules, the results provide insights into both the electronic and nuclear dynamics of this fundamental class of reactions. The initial ring opening and non-adiabatic coupling to the electronic ground state are shown to be driven by ballistic S-C bond extension and to be complete within 350 fs. Theory and experiment also enable visualization of the rich ground-state dynamics that involve the formation of, and interconversion between, ring-opened isomers and the cyclic structure, as well as fragmentation over much longer timescales.

11.
Nat Commun ; 11(1): 1547, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210241

RESUMO

Hydrogen sulfide radicals in the ground state, SH(X), and hydrogen disulfide molecules, H2S, are both detected in the interstellar medium, but the returned SH(X)/H2S abundance ratios imply a depletion of the former relative to that predicted by current models (which assume that photon absorption by H2S at energies below the ionization limit results in H + SH photoproducts). Here we report that translational spectroscopy measurements of the H atoms and S(1D) atoms formed by photolysis of jet-cooled H2S molecules at many wavelengths in the range 122 ≤ λ ≤155 nm offer a rationale for this apparent depletion; the quantum yield for forming SH(X) products, Γ, decreases from unity (at the longest excitation wavelengths) to zero at short wavelengths. Convoluting the wavelength dependences of Γ, the H2S parent absorption and the interstellar radiation field implies that only ~26% of photoexcitation events result in SH(X) products. The findings suggest a need to revise the relevant astrochemical models.

12.
Chem Sci ; 11(19): 5089-5097, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-34122966

RESUMO

Chemical processing in the stratospheres of the gas giants is driven by incident vacuum ultraviolet (VUV) light. Ethane is an important constituent in the atmospheres of the gas giants in our solar system. The present work describes translational spectroscopy studies of the VUV photochemistry of ethane using tuneable radiation in the wavelength range 112 ≤ λ ≤ 126 nm from a free electron laser and event-triggered, fast-framing, multi-mass imaging detection methods. Contributions from at least five primary photofragmentation pathways yielding CH2, CH3 and/or H atom products are demonstrated and interpreted in terms of unimolecular decay following rapid non-adiabatic coupling to the ground state potential energy surface. These data serve to highlight parallels with methane photochemistry and limitations in contemporary models of the photoinduced stratospheric chemistry of the gas giants. The work identifies additional photochemical reactions that require incorporation into next generation extraterrestrial atmospheric chemistry models which should help rationalise hitherto unexplained aspects of the atmospheric ethane/acetylene ratios revealed by the Cassini-Huygens fly-by of Jupiter.

13.
Chem Sci ; 10(20): 5290-5298, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31191885

RESUMO

We illustrate a new, collision-free experimental strategy that allows determination of the absolute probabilities of rival bond fission processes in a photoexcited molecule - here t-butylmethylsulfide (BSM). The method combines single photon ('universal') ionization laser probe methods, simultaneous imaging of all probed fragments (multi-mass ion imaging) and the use of an appropriate internal calibrant (here dimethylsulfide). Image analysis allows quantification of the dynamics of the rival B-SM and BS-M bond fission processes following ultraviolet (UV) excitation of BSM and shows the former to be twice as probable, despite the only modest (∼2%) differences in the respective ground state equilibrium C-S bond lengths or bond strengths. Rationalising this finding should provide a stringent test of the two close-lying, coupled excited states of 1A'' symmetry accessed by UV excitation in BSM and related thioethers, of the respective transition dipole moment surfaces, and of the geometry dependent non-adiabatic couplings that enable the rival C-S bond fissions.

14.
J Phys Chem A ; 122(51): 9869-9878, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30500203

RESUMO

The ultraviolet (UV) photodissociation of gas-phase methimazole has been investigated by H Rydberg atom photofragment translational spectroscopy methods at many wavelengths in the range of 222.5-275 nm and by complementary electronic structure calculations. Methimazole is shown to exist predominantly as the thione tautomer, 1-methyl-2(3 H)-imidazolinethione, rather than the commonly given thiol form, 2-mercapto-1-methylimidazole. The UV absorption spectrum of methimazole is dominated by the S4 ← S0 transition of the thione tautomer, which involves electron promotion from an a' (p y) orbital localized on the sulfur atom to a σ* orbital localized around the N-H bond. Two H atom formation pathways are identified following UV photoexcitation. One, involving prompt, excited-state N-H bond fission, yields vibrationally cold but rotationally excited methimazolyl (Myl) radicals in their first excited (Ã) electronic state. The second yields H atoms with an isotropic recoil velocity distribution peaking at low kinetic energies but extending to the energetic limit allowed by energy conservation given a ground-state dissociation energy D0(Myl-H) ∼24 000 cm-1. These latter H atoms are attributed to the unimolecular decay of highly vibrationally excited S0 parent molecules. The companion electronic structure calculations provide rationales for both fragmentation pathways and the accompanying product energy disposals and highlight similarities and differences between the UV photochemistry of methimazole and that of other azoles (e.g., imidazole) and with molecules like thiourea and thiouracil that contain similar N-C═S motifs.

15.
J Chem Phys ; 149(8): 081103, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30193497

RESUMO

This study of the photodissociation of dimethyl sulfide at λ = 227.5 nm demonstrates the opportunities (and some of the challenges) of product detection using vacuum ultraviolet photoionization combined with recently developed multi-mass imaging methods. The capability of imaging different charged products simultaneously allows determination of the primary fragmentation dynamics through, for example, product fragment momentum and angular distribution matching and reveals potential complications from dissociative ionization, product alignment-dependent photoionization probabilities, and the effects of space charging.

16.
J Chem Phys ; 147(1): 013923, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688415

RESUMO

The near ultraviolet spectroscopy and photodissociation dynamics of two families of asymmetrically substituted thiophenols (2- and 3-YPhSH, with Y = F and Me) have been investigated experimentally (by H (Rydberg) atom photofragment translational spectroscopy) and by ab initio electronic structure calculations. Photoexcitation in all cases populates the 11ππ* and/or 11πσ* excited states and results in S-H bond fission. Analyses of the experimentally obtained total kinetic energy release (TKER) spectra yield the respective parent S-H bond strengths, estimates of ΔE(A∼-X∼), the energy splitting between the ground (X∼) and first excited (A∼) states of the resulting 2-(3-)YPhS radicals, and reveal a clear propensity for excitation of the C-S in-plane bending vibration in the radical products. The companion theory highlights roles for both geometric (e.g., steric effects and intramolecular H-bonding) and electronic (i.e., π (resonance) and σ (inductive)) effects in determining the respective parent minimum energy geometries, and the observed substituent and position-dependent trends in S-H bond strength and ΔE(A∼-X∼). 2-FPhSH shows some clear spectroscopic and photophysical differences. Intramolecular H-bonding ensures that most 2-FPhSH molecules exist as the syn rotamer, for which the electronic structure calculations return a substantial barrier to tunnelling from the photoexcited 11ππ* state to the 11πσ* continuum. The 11ππ* ← S0 excitation spectrum of syn-2-FPhSH thus exhibits resolved vibronic structure, enabling photolysis studies with a greater parent state selectivity. Structure apparent in the TKER spectrum of the H + 2-FPhS products formed when exciting at the 11ππ* ← S0 origin is interpreted by assuming unintended photoexcitation of an overlapping resonance associated with syn-2-FPhSH(v33 = 1) molecules. The present data offer tantalising hints that such out-of-plane motion influences non-adiabatic coupling in the vicinity of a conical intersection (between the 11πσ* and ground state potentials at extended S-H bond lengths) and thus the electronic branching in the eventual radical products.

17.
J Phys Chem Lett ; 8(14): 3440-3451, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28661140

RESUMO

Excited states formed by electron promotion to an antibonding σ* orbital are now recognized as key to understanding the photofragmentation dynamics of a broad range of heteroatom containing small molecules: alcohols, thiols, amines, and many of their aromatic analogues. Such excited states may be populated by direct photoexcitation, or indirectly by nonadiabatic transfer of population from some other optically excited state (e.g., a ππ* state). This Perspective explores the extent to which the fast-growing literature pertaining to such (n/π)σ*-state mediated bond fissions can inform and enhance our mechanistic understanding of photoinduced ring-opening in heterocyclic molecules.

18.
J Am Soc Mass Spectrom ; 27(9): 1483-90, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27278825

RESUMO

A cationic degradation product, formed in solution from retinal Schiff base (RSB), is examined in the gas phase using ion mobility spectrometry, photoisomerization action spectroscopy, and collision induced dissociation (CID). The degradation product is found to be N-n-butyl-2-(ß-ionylidene)-4-methylpyridinium (BIP) produced through 6π electrocyclization of RSB followed by protonation and loss of dihydrogen. Ion mobility measurements show that BIP exists as trans and cis isomers that can be interconverted through buffer gas collisions and by exposure to light, with a maximum response at λ = 420 nm.Graphical Abstract.

19.
Chem Sci ; 7(9): 6245-6250, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30034765

RESUMO

Owing to the increased proton affinity that results from additional negative charges, multiply-charged anions have been proposed as one route to prepare and access a range of new and powerful "superbases". Paradoxically, while the additional electrons in polyanions increase basicity they serve to diminish the electron binding energy and thus, it had been thought, hinder experimental synthesis. We report the synthesis and isolation of the ortho-diethynylbenzene dianion (ortho-DEB2-) and present observations of this novel species undergoing gas-phase proton-abstraction reactions. Using a theoretical model based on Marcus-Hush theory, we attribute the stability of ortho-DEB2- to the presence of a barrier that prevents spontaneous electron detachment. The proton affinity of 1843 kJ mol-1 calculated for this dianion superbase using high-level quantum chemistry calculations significantly exceeds that of the lithium monoxide anion, the most basic system previously prepared. The ortho-diethynylbenzene dianion is therefore the strongest base that has been experimentally observed to date.

20.
Phys Chem Chem Phys ; 17(39): 25882-90, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26027703

RESUMO

The gas-phase photodissociation action spectroscopy of protonated quinoline and isoquinoline cations (quinolineH(+) and isoquinolineH(+)) is investigated at ambient temperature. Both isomers exhibit vibronic detail and wavelength-dependent photoproduct partitioning across two broad bands in the ultraviolet. Photodissociation action spectra are reported spanning 370-285 nm and 250-220 nm and analysed with the aid of electronic structure calculations: TD-DFT (CAM-B3LYP/aug-cc-pVDZ) is used for spectra simulations and CBS-QB3 for dissociation enthalpies. It is shown that the action spectra are afforded predominantly by two-photon excitation. The first band is attributed to both the S1 ← S0 and S2 ← S0 electronic transitions in quinolineH(+), with a S1 ← S0 electronic origin assigned at 27,900 cm(-1). For isoquinolineH(+) the S1 ← S0 transition is observed with an assigned electronic origin at 27,500 cm(-1). A separate higher energy band is observed for both species, corresponding to the S3 ← S0 transition, with origins assigned at 42,100 cm(-1) and 42,500 cm(-1) for quinolineH(+) and isoquinolineH(+), respectively. Franck-Condon absorption simulations provide an explanation for some vibrational structure observed in both bands allowing several normal mode assignments. The nature of the electronic transitions is discussed and it is shown that the excited states active in the reported spectra should be of ππ* character with some degree of charge transfer from the homocycle to the heterocycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA