Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Am J Obstet Gynecol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710264

RESUMO

BACKGROUND: Postpartum hemorrhage (PPH) is difficult to predict, is associated with significant maternal morbidity, and is the leading cause of maternal mortality worldwide. The identification of maternal biomarkers that can predict increased PPH risk would enhance clinical care and may uncover mechanisms that lead to PPH. OBJECTIVE: This retrospective case-control study employed agnostic proteomic profiling of maternal plasma samples to identify differentially abundant proteins in controls and PPH cases. STUDY DESIGN: Maternal plasma samples were procured from a cohort of >60,000 participants in a single institution's perinatal repository. PPH was defined as a decrease in hematocrit of ≥10% or receipt of transfusion within 24 hours of delivery. PPH cases (N=30) were matched by maternal age and delivery mode (vaginal or cesarean) with controls (N=56). Mass spectrometry was used to identify differentially abundant proteins using integrated peptide peak areas. Statistically significant differences between groups were defined by a p-value of <0.05 after controlling for multiple comparisons. RESULTS: By study design, cases and controls did not differ in race, ethnicity, gestational age at delivery, blood type, or pre-delivery platelet count. Cases had slightly, but significantly lower pre- and post-delivery hematocrit and hemoglobin. Mass spectrometry detected 1140 proteins, including 77 proteins for which relative abundance differed significantly between cases and controls (fold change >1.15, P<0.05). Of these differentially abundant plasma proteins, most had likely liver or placental origins. Gene ontology term analysis mapped to protein clusters involved in responses to wound healing, stress response, and host immune defense. Significantly differentially abundant proteins with the highest fold change (prostaglandin D2 synthase, periostin, and several serine protease inhibitors) did not correlate with pre-delivery hematocrit or hemoglobin, but identified PPH cases with logistic regression modeling revealing good-to-excellent area under the operator receiver characteristic curves (AUROC 0.802-0.874). Incorporating pre-delivery hemoglobin with these candidate proteins further improved identification of PPH cases. CONCLUSION: Agnostic analysis of maternal plasma samples identified differentially abundant proteins in controls and PPH cases. Several of these proteins are known to participate in biologically plausible pathways for PPH risk and have potential value for predicting PPH. These findings identify candidate protein biomarkers for future validation and mechanistic studies.

2.
Cardiovasc Res ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666458

RESUMO

Following myocardial infarction, the heart repairs itself via a fibrotic repair response. The degree of fibrosis is determined by the balance between deposition of extracellular matrix by activated fibroblasts and breakdown of nascent scar tissue by proteases that are secreted predominantly by inflammatory cells. Excessive proteolytic activity and matrix turnover has been observed in human heart failure and protease inhibitors in the injured heart regulate matrix breakdown. Serine protease inhibitors (Serpins) represent the largest and the most functionally diverse family of evolutionary conserved protease inhibitors and levels of the specific Serpin, SerpinA3, have been strongly associated with clinical outcomes in human myocardial infarction as well as non-ischemic cardiomyopathies. Yet, the role of Serpins in regulating cardiac remodeling is poorly understood. We observed the robust expression of Serpins in the infarcted murine heart and demonstrate that genetic deletion of SerpinA3n (mouse homolog of SerpinA3) leads to increased activity of substrate proteases, poorly compacted matrix and significantly worse post infarct cardiac function. Single cell transcriptomics complemented with histology in SerpinA3n deficient animals, demonstrated increased inflammation, adverse myocyte hypertrophy and expression of pro-hypertrophic genes. Proteomic analysis of scar tissue demonstrated decreased cross linking of extracellular matrix peptides consistent with increased proteolysis in SerpinA3n deficient animals. Taken together these observations demonstrate a hitherto unappreciated causal role of Serpins in regulating matrix function and post infarct cardiac remodeling.

3.
Mol Cell Proteomics ; : 100779, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679388

RESUMO

New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation, and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including Thermal Proteome Profiling (TPP) and Proteome Integral Solubility Alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply TPP and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.

4.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38585857

RESUMO

Collagen cross-links created by the lysyl oxidase and lysyl hydroxylase families of enzymes are a significant contributing factor to the biomechanical strength and rigidity of tissues, which in turn influence cell signaling and ultimately cell phenotype. In the clinic, the proteolytically liberated N-terminal cross-linked peptide of collagen I (NTX) is used as a biomarker of bone and connective tissue turnover, which is altered in several disease processes. Despite the clinical utility of these collagen breakdown products, the majority of the cross-linked peptide species have not been identified in proteomic datasets. Here we evaluate several parameters for the preparation and identification of these peptides from the collagen I-rich Achilles tendon. Our refined approach involving chemical digestion for protein solubilization coupled with mass spectrometry allows for the identification of the NTX cross-links in a range of modification states. Based on the specificity of the enzymatic cross-linking reaction we utilized follow-up variable modification searches to facilitate identification with a wider range of analytical workflows. We then applied a spectral library approach to identify differences in collagen cross-links in bovine pulmonary hypertension. The presented method offers unique opportunities to understand extracellular matrix remodeling events in development, aging, wound healing, and fibrotic disease that modulate collagen architecture through lysyl-hydroxylase and lysyl-oxidase enzymes.

5.
Blood ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513237

RESUMO

Recent large-scale multi-omics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on two separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured L-carnitine and acyl-carnitines in 13,091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation (REDS) study. Genome wide association studies against 879,000 polymorphisms identified critical genetic factors contributing to inter-donor heterogeneity in end-of-storage carnitine levels, including common non-synonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, SLC16A9); carnitine synthesis (FLVCR1, MTDH) and metabolism (CPT1A, CPT2, CRAT, ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying two alleles of the rs12210538 SLC22A16 Single Nucleotide Polymorphism exhibited the lowest L-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice and Percoll density gradients of human RBCs, showed age-dependent depletions of L-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process following chemically induced membrane lipid damage. Supplementation of stored murine RBCs with L-carnitine boosted post-transfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.

6.
Pathophysiology ; 31(1): 166-182, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535623

RESUMO

To molecularly characterize the impact of exercise on mitigating neoadjuvant treatment (NAT)-induced physical decline in pancreatic ductal adenocarcinoma (PDAC) patients, a multi-omics approach was employed for the analysis of plasma samples before and after a personalized exercise intervention. Consisting of personalized aerobic and resistance exercises, this intervention was associated with significant molecular changes that correlated with improvements in lean mass, appendicular skeletal muscle index (ASMI), and performance in the 400-m walk test (MWT) and sit-to-stand test. These alterations indicated exercise-induced modulation of inflammation and mitochondrial function markers. This case study provides proof-of-principal application for multiomics-based assessments of supervised exercise, thereby supporting this intervention as a feasible and beneficial intervention for PDAC patients to potentially enhance treatment response and patient quality of life. The molecular changes observed here underscore the importance of physical activity in cancer treatment protocols, advocating for the development of accessible multiomics-guided exercise programs for cancer patients.

7.
J Proteome Res ; 23(4): 1163-1173, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386921

RESUMO

Trauma-induced coagulopathy (TIC) is a leading contributor to preventable mortality in severely injured patients. Understanding the molecular drivers of TIC is an essential step in identifying novel therapeutics to reduce morbidity and mortality. This study investigated multiomics and viscoelastic responses to polytrauma using our novel swine model and compared these findings with severely injured patients. Molecular signatures of TIC were significantly associated with perturbed coagulation and inflammation systems as well as extensive hemolysis. These results were consistent with patterns observed in trauma patients who had multisystem injuries. Here, intervention using resuscitative endovascular balloon occlusion of the aorta following polytrauma in our swine model revealed distinct multiomics alterations as a function of placement location. Aortic balloon placement in zone-1 worsened ischemic damage and mitochondrial dysfunction, patterns that continued throughout the monitored time course. While placement in zone-III showed a beneficial effect on TIC, it showed an improvement in effective coagulation. Taken together, this study highlights the translational relevance of our polytrauma swine model for investigating therapeutic interventions to correct TIC in patients.


Assuntos
Oclusão com Balão , Traumatismo Múltiplo , Humanos , Animais , Suínos , Multiômica , Traumatismo Múltiplo/complicações , Traumatismo Múltiplo/terapia , Aorta , Coagulação Sanguínea , Oclusão com Balão/métodos
8.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38260479

RESUMO

Mature red blood cells (RBCs) lack mitochondria, and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo and during storage in vitro in the blood bank. Here we identify an association between blood donor age, sex, ethnicity and end-of-storage levels of glycolytic metabolites in 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study. Associations were also observed to ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (which we detected in mature RBCs), hexokinase 1, and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice, and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP levels, breakdown, and deamination into hypoxanthine were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions. Highlights: Blood donor age and sex affect glycolysis in stored RBCs from 13,029 volunteers;Ancestry, genetic polymorphisms in PFKP, HK1, CD38/BST1 influence RBC glycolysis;RBC PFKP boosts glycolytic fluxes when ATP is low, such as in stored RBCs;ATP and hypoxanthine are biomarkers of hemolysis in vitro and in vivo.

9.
Blood ; 143(5): 456-472, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976448

RESUMO

ABSTRACT: In the field of transfusion medicine, the clinical relevance of the metabolic markers of the red blood cell (RBC) storage lesion is incompletely understood. Here, we performed metabolomics of RBC units from 643 donors enrolled in the Recipient Epidemiology and Donor Evaluation Study, REDS RBC Omics. These units were tested on storage days 10, 23, and 42 for a total of 1929 samples and also characterized for end-of-storage hemolytic propensity after oxidative and osmotic insults. Our results indicate that the metabolic markers of the storage lesion poorly correlated with hemolytic propensity. In contrast, kynurenine was not affected by storage duration and was identified as the top predictor of osmotic fragility. RBC kynurenine levels were affected by donor age and body mass index and were reproducible within the same donor across multiple donations from 2 to 12 months apart. To delve into the genetic underpinnings of kynurenine levels in stored RBCs, we thus tested kynurenine levels in stored RBCs on day 42 from 13 091 donors from the REDS RBC Omics study, a population that was also genotyped for 879 000 single nucleotide polymorphisms. Through a metabolite quantitative trait loci analysis, we identified polymorphisms in SLC7A5, ATXN2, and a series of rate-limiting enzymes (eg, kynurenine monooxygenase, indoleamine 2,3-dioxygenase, and tryptophan dioxygenase) in the kynurenine pathway as critical factors affecting RBC kynurenine levels. By interrogating a donor-recipient linkage vein-to-vein database, we then report that SLC7A5 polymorphisms are also associated with changes in hemoglobin and bilirubin levels, suggestive of in vivo hemolysis in 4470 individuals who were critically ill and receiving single-unit transfusions.


Assuntos
Doadores de Sangue , Hemólise , Humanos , Cinurenina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Eritrócitos/metabolismo , Metabolômica , Preservação de Sangue/métodos
10.
Proc Natl Acad Sci U S A ; 121(1): e2315930120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147558

RESUMO

Red blood cell (RBC) metabolic reprogramming upon exposure to high altitude contributes to physiological human adaptations to hypoxia, a multifaceted process critical to health and disease. To delve into the molecular underpinnings of this phenomenon, first, we performed a multi-omics analysis of RBCs from six lowlanders after exposure to high-altitude hypoxia, with longitudinal sampling at baseline, upon ascent to 5,100 m and descent to sea level. Results highlighted an association between erythrocyte levels of 2,3-bisphosphoglycerate (BPG), an allosteric regulator of hemoglobin that favors oxygen off-loading in the face of hypoxia, and expression levels of the Rhesus blood group RHCE protein. We then expanded on these findings by measuring BPG in RBCs from 13,091 blood donors from the Recipient Epidemiology and Donor Evaluation Study. These data informed a genome-wide association study using BPG levels as a quantitative trait, which identified genetic polymorphisms in the region coding for the Rhesus blood group RHCE as critical determinants of BPG levels in erythrocytes from healthy human volunteers. Mechanistically, we suggest that the Rh group complex, which participates in the exchange of ammonium with the extracellular compartment, may contribute to intracellular alkalinization, thus favoring BPG mutase activity.


Assuntos
Altitude , Antígenos de Grupos Sanguíneos , Hipóxia , Sistema do Grupo Sanguíneo Rh-Hr , Humanos , 2,3-Difosfoglicerato/metabolismo , Eritrócitos/metabolismo , Estudo de Associação Genômica Ampla , Hipóxia/genética , Hipóxia/metabolismo , Polimorfismo Genético , Sistema do Grupo Sanguíneo Rh-Hr/genética , Sistema do Grupo Sanguíneo Rh-Hr/metabolismo
11.
Ann Surg ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073572

RESUMO

OBJECTIVE: We aimed to investigate if ex vivo plasma from injured patients causes endothelial calcium (Ca2+) influx as a mechanism of trauma-induced endothelial permeability. SUMMARY BACKGROUND DATA: Endothelial permeability after trauma contributes to post-injury organ dysfunction. While the mechanisms remain unclear, emerging evidence suggests intracellular Ca2+ signaling may play a role. METHODS: Ex vivo plasma from injured patients with "Low Injury/Low Shock" (injury severity score [ISS]<15, base excess [BE])≥-6mEq/L) and "High Injury/High Shock" (ISS≥15, BE<-6mEq/L) were used to treat endothelial cells. Experimental conditions included Ca2+ removal from the extracellular buffer, cyclopiazonic acid pre-treatment to deplete intracellular Ca2+ stores, and GSK2193874 pre-treatment to block the TRPV4 Ca2+ channel. Live cell fluorescence microscopy and ECIS were used to assess cytosolic Ca2+ increases and permeability, respectively. Western blot and live cell actin staining were used to assess myosin light chain (MLC) phosphorylation and actomyosin contraction. RESULTS: Compared to Low Injury/Low Shock plasma, High Injury/High Shock induced greater cytosolic Ca2+ increase. Cytosolic Ca2+ increase, MLC phosphorylation, and actin cytoskeletal contraction were lower without extracellular Ca2+ present. High Injury/High Shock plasma did not induce endothelial permeability without extracellular Ca2+ present. TRPV4 inhibition lowered trauma plasma-induced endothelial Ca2+ influx and permeability. CONCLUSIONS: This study illuminates a novel mechanism of post-injury endotheliopathy involving Ca2+ influx via the TRPV4 channel. TRPV4 inhibition mitigates trauma-induced endothelial permeability. Moreover, widespread endothelial Ca2+ influx may contribute to trauma-induced hypocalcemia. This study provides the mechanistic basis for the development of Ca2+-targeted therapies and interventions in the care of severely injured patients.

12.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37873317

RESUMO

In mammals, significant injury is generally followed by the formation of a fibrotic scar which provides structural integrity but fails to functionally restore damaged tissue. Spiny mice of the genus Acomys represent the first example of full skin autotomy in mammals. Acomys cahirinus has evolved extremely weak skin as a strategy to avoid predation and is able to repeatedly regenerate healthy tissue without scar after severe skin injury or full-thickness ear punches. Extracellular matrix (ECM) composition is a critical regulator of wound repair and scar formation and previous studies have suggested that alterations in its expression may be responsible for the differences in regenerative capacity observed between Mus musculus and A. cahirinus , yet analysis of this critical tissue component has been limited in previous studies by its insolubility and resistance to extraction. Here, we utilize a 2-step ECM-optimized extraction to perform proteomic analysis of tissue composition during wound repair after full-thickness ear punches in A. cahirinus and M. musculus from weeks 1 to 4 post-injury. We observe changes in a wide range of ECM proteins which have been previously implicated in wound regeneration and scar formation, including collagens, coagulation and provisional matrix proteins, and matricryptic signaling peptides. We additionally report differences in crosslinking enzyme activity and ECM protein solubility between Mus and Acomys. Furthermore, we observed rapid and sustained increases in CD206, a marker of pro-regenerative M2 macrophages, in Acomys, whereas little or no increase in CD206 was detected in Mus. Together, these findings contribute to a comprehensive understanding of tissue cues which drive the regenerative capacity of Acomys and identify a number of potential targets for future pro-regenerative therapies.

13.
Cells ; 12(17)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37681905

RESUMO

RATIONALE: The adult cardiac extracellular matrix (ECM) is largely comprised of type I collagen. In addition to serving as the primary structural support component of the cardiac ECM, type I collagen also provides an organizational platform for other ECM proteins, matricellular proteins, and signaling components that impact cellular stress sensing in vivo. OBJECTIVE: Here we investigated how the content and integrity of type I collagen affect cardiac structure function and response to injury. METHODS AND RESULTS: We generated and characterized Col1a2-/- mice using standard gene targeting. Col1a2-/- mice were viable, although by young adulthood their hearts showed alterations in ECM mechanical properties, as well as an unanticipated activation of cardiac fibroblasts and induction of a progressive fibrotic response. This included augmented TGFß activity, increases in fibroblast number, and progressive cardiac hypertrophy, with reduced functional performance by 9 months of age. Col1a2-loxP-targeted mice were also generated and crossed with the tamoxifen-inducible Postn-MerCreMer mice to delete the Col1a2 gene in myofibroblasts with pressure overload injury. Interestingly, while germline Col1a2-/- mice showed gradual pathologic hypertrophy and fibrosis with aging, the acute deletion of Col1a2 from activated adult myofibroblasts showed a loss of total collagen deposition with acute cardiac injury and an acute reduction in pressure overload-induce cardiac hypertrophy. However, this reduction in hypertrophy due to myofibroblast-specific Col1a2 deletion was lost after 2 and 6 weeks of pressure overload, as fibrotic deposition accumulated. CONCLUSIONS: Defective type I collagen in the heart alters the structural integrity of the ECM and leads to cardiomyopathy in adulthood, with fibroblast expansion, activation, and alternate fibrotic ECM deposition. However, acute inhibition of type I collagen production can have an anti-fibrotic and anti-hypertrophic effect.


Assuntos
Cardiomiopatias , Colágeno Tipo I , Animais , Camundongos , Cardiomegalia/genética , Colágeno Tipo I/genética , Fibrose
14.
Shock ; 60(5): 652-663, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695733

RESUMO

ABSTRACT: Background: Trauma-induced hypocalcemia is common and associated with adverse outcomes, but the mechanisms remain unclear. Thus, we aimed to characterize the metabolomic and proteomic differences between normocalcemic and hypocalcemic trauma patients to illuminate biochemical pathways that may underlie a distinct pathology linked with this clinical phenomenon. Methods: Plasma was obtained on arrival from injured patients at a Level 1 Trauma Center. Samples obtained after transfusion were excluded. Multiple regression was used to adjust the omics data for injury severity and arrival base excess before metabolome- and proteome-wide comparisons between normocalcemic (ionized Ca 2+ > 1.0 mmol/L) and hypocalcemic (ionized Ca 2+ ≤ 1.0 mmol/L) patients using partial least squares-discriminant analysis. OmicsNet and Gene Ontology were used for network and pathway analyses, respectively. Results: Excluding isolated traumatic brain injury and penetrating injury, the main analysis included 36 patients (n = 14 hypocalcemic, n = 22 normocalcemic). Adjusted analyses demonstrated distinct metabolomic and proteomic signatures for normocalcemic and hypocalcemic patients. Hypocalcemic patients had evidence of mitochondrial dysfunction (tricarboxylic acid cycle disruption, dysfunctional fatty acid oxidation), inflammatory dysregulation (elevated damage-associated molecular patterns, activated endothelial cells), aberrant coagulation pathways, and proteolytic imbalance with increased tissue destruction. Conclusions: Independent of injury severity, hemorrhagic shock, and transfusion, trauma-induced hypocalcemia is associated with early metabolomic and proteomic changes that may reflect unique pathology in hypocalcemic trauma patients. This study paves the way for future experiments to investigate mechanisms, identify intervenable pathways, and refine our management of hypocalcemia in severely injured patients.


Assuntos
Hipocalcemia , Choque Hemorrágico , Humanos , Hipocalcemia/metabolismo , Cálcio/metabolismo , Células Endoteliais/metabolismo , Proteômica
15.
Am J Surg ; 226(6): 790-797, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37541795

RESUMO

BACKGROUND: The interactions of polytrauma, shock, and traumatic brain injury (TBI) on thromboinflammatory responses remain unclear and warrant investigation as we strive towards personalized medicine in trauma. We hypothesized that comprehensive omics characterization of plasma would identify unique metabolic and thromboinflammatory pathways following TBI. METHODS: Patients were categorized as TBI vs Non-TBI, and stratified into Polytrauma or minimally injured. Discovery 'omics was employed to quantify the top differently expressed proteins and metabolites of TBI and Non-TBI patient groups. RESULTS: TBI compared to Non-TBI showed gene enrichment in coagulation/complement cascades and neuronal markers. TBI was associated with elevation in glycolytic metabolites and conjugated bile acids. Division into isolated TBI vs polytrauma showed further distinction of proteomic and metabolomic signatures. CONCLUSION: Identified mediators involving in neural inflammation, blood brain barrier disruption, and bile acid building leading to TBI associated coagulopathy offer suggestions for follow up mechanistic studies to target personalized interventions.


Assuntos
Transtornos da Coagulação Sanguínea , Lesões Encefálicas Traumáticas , Traumatismo Múltiplo , Humanos , Proteômica , Transtornos da Coagulação Sanguínea/etiologia , Metabolômica
16.
Sci Transl Med ; 15(707): eabj3138, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531414

RESUMO

Pelvic floor disorders, including pelvic organ prolapse and urinary and fecal incontinence, affect millions of women globally and represent a major public health concern. Pelvic floor muscle (PFM) dysfunction has been identified as one of the leading risk factors for the development of these morbid conditions. Childbirth, specifically vaginal delivery, has been recognized as the most important potentially modifiable risk factor for PFM injury; however, the precise mechanisms of PFM dysfunction after parturition remain elusive. In this study, we demonstrated that PFMs exhibit atrophy and fibrosis in parous women with symptomatic pelvic organ prolapse. These pathological alterations were recapitulated in a preclinical rat model of simulated birth injury (SBI). The transcriptional signature of PFMs after injury demonstrated an impairment in muscle anabolism, persistent expression of genes that promote extracellular matrix (ECM) deposition, and a sustained inflammatory response. We also evaluated the administration of acellular injectable skeletal muscle ECM hydrogel for the prevention of these pathological alterations. Treatment of PFMs with the ECM hydrogel either at the time of birth injury or 4 weeks after injury mitigated PFM atrophy and fibrosis. By evaluating gene expression, we demonstrated that these changes are mainly driven by the hydrogel-induced enhancement of endogenous myogenesis, ECM remodeling, and modulation of the immune response. This work furthers our understanding of PFM birth injury and demonstrates proof of concept for future investigations of proregenerative biomaterial approaches for the treatment of injured pelvic soft tissues.


Assuntos
Traumatismos do Nascimento , Prolapso de Órgão Pélvico , Gravidez , Feminino , Ratos , Animais , Hidrogéis , Diafragma da Pelve/fisiologia , Parto , Músculo Esquelético , Traumatismos do Nascimento/complicações , Fibrose , Prolapso de Órgão Pélvico/etiologia , Matriz Extracelular
17.
bioRxiv ; 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37645811

RESUMO

Understanding and managing the complexity of trauma-induced thrombo-inflammation necessitates an innovative, data-driven approach. This study leveraged a trans-omics analysis of longitudinal samples from trauma patients to illuminate molecular endotypes and trajectories that underpin patient outcomes, transcending traditional demographic and physiological characterizations. We hypothesize that trans-omics profiling reveals underlying clinical differences in severely injured patients that may present with similar clinical characteristics but ultimately have very different responses to treatment and clinical outcomes. Here we used proteomics and metabolomics to profile 759 of longitudinal plasma samples from 118 patients at 11 time points and 97 control subjects. Results were used to define distinct patient states through data reduction techniques. The patient groups were stratified based on their shock severity and injury severity score, revealing a spectrum of responses to trauma and treatment that are fundamentally tied to their unique underlying biology. Ensemble models were then employed, demonstrating the predictive power of these molecular signatures with area under the receiver operating curves of 80 to 94% for key outcomes such as INR, ICU-free days, ventilator-free days, acute lung injury, massive transfusion, and death. The molecularly defined endotypes and trajectories provide an unprecedented lens to understand and potentially guide trauma patient management, opening a path towards precision medicine. This strategy presents a transformative framework that aligns with our understanding that trauma patients, despite similar clinical presentations, might harbor vastly different biological responses and outcomes.

18.
J Proteomics ; 289: 104992, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37634627

RESUMO

Here we introduce hyperthermoacidic archaeal proteases (HTA-Proteases©) isolated from organisms that thrive in nearly boiling acidic volcanic springs and investigate their use for bottom-up proteomic experiments. We find that HTA-Proteases have novel cleavage specificities, show no autolysis, function in dilute formic acid, and store at ambient temperature for years. HTA-Proteases function optimally at 70-90 °C and pH of 2-4 with rapid digestion kinetics. The extreme HTA-Protease reaction conditions actively denature sample proteins, obviate the use of chaotropes, are largely independent of reduction and alkylation, and allow for a one-step/five-minute sample preparation protocol without sample manipulation, dilution, or additional cleanup. We find that brief one-step HTA-Protease protocols significantly increase proteome and protein sequence coverage with datasets orthogonal to trypsin. Importantly, HTA-Protease digests markedly increase coverage and identifications for ribonucleoproteins, histones, and mitochondrial membrane proteins as compared to tryptic digests alone. In addition to increased coverage in these classes, HTA-Proteases and simplified one-step protocols are expected to reduce technical variability and advance the fields of clinical and high-throughput proteomics. This work reveals significant utility of heretofore unavailable HTA-Proteases for proteomic workflows. We discuss some of the potential for these remarkable enzymes to empower new proteomics methods, approaches, and biological insights. SIGNIFICANCE: Here we introduce new capabilities for bottom-up proteomics applications with hyperthermoacidic archaeal proteases (HTA-Proteases©). HTA-Proteases have novel cleavage specificity, require no chaotropes, and allow simple one-step/five-minute sample preparations that promise to reduce variability between samples and laboratories. HTA-Proteases generate unique sets of observable peptides that are non-overlapping with tryptic peptides and significantly increase sequence coverage and available peptide targets relative to trypsin alone. HTA-Proteases show some bias for the detection and coverage of nucleic acid-binding proteins and membrane proteins relative to trypsin. These new ultra-stable enzymes function optimally in nearly boiling acidic conditions, show no autolysis, and do not require aliquoting as they are stable for years at ambient temperatures. Used independently or in conjunction with tryptic digests, HTA-Proteases offer increased proteome coverage, unique peptide targets, and brief one-step protocols amenable to automation, rapid turnaround, and high-throughput approaches.


Assuntos
Peptídeo Hidrolases , Proteoma , Peptídeo Hidrolases/metabolismo , Tripsina/química , Proteoma/metabolismo , Proteômica/métodos , Fluxo de Trabalho , Peptídeos/química , Proteínas de Membrana/metabolismo
19.
Cells ; 12(10)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37408209

RESUMO

Thyroid cancer is the most common endocrine neoplasm, and despite its overall high survival rate, patients with metastatic disease or tumors that resist radioactive iodine experience a significantly worse prognosis. Helping these patients requires a better understanding of how therapeutics alter cellular function. Here, we describe the change in metabolite profiles after treating thyroid cancer cells with the kinase inhibitors dasatinib and trametinib. We reveal alterations to glycolysis, the TCA cycle, and amino acid levels. We also highlight how these drugs promote short-term accumulation of the tumor-suppressive metabolite 2-oxoglutarate, and demonstrate that it reduces the viability of thyroid cancer cells in vitro. These results show that kinase inhibition profoundly alters the metabolome of cancer cells and highlight the need to better understand how therapeutics reprogram metabolic processes, and ultimately, cancer cell behavior.


Assuntos
Neoplasias da Glândula Tireoide , Quinases da Família src , Humanos , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Quinases da Família src/metabolismo , Radioisótopos do Iodo/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral
20.
Cells ; 12(13)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37443806

RESUMO

The translation of stem cell therapies has been hindered by low cell survival and retention rates. Injectable hydrogels enable the site-specific delivery of therapeutic cargo, including cells, to overcome these challenges. We hypothesized that delivery of mesenchymal stem cells (MSC) via shear-thinning and injectable hyaluronic acid (HA) hydrogels would mitigate renal damage following ischemia-reperfusion acute kidney injury. Acute kidney injury (AKI) was induced in mice by bilateral or unilateral ischemia-reperfusion kidney injury. Three days later, mice were treated with MSCs either suspended in media injected intravenously via the tail vein, or injected under the capsule of the left kidney, or MSCs suspended in HA injected under the capsule of the left kidney. Serial measurements of serum and urine biomarkers of renal function and injury, as well as transcutaneous glomerular filtration rate (tGFR) were performed. In vivo optical imaging showed that MSCs localized to both kidneys in a sustained manner after bilateral ischemia and remained within the ipsilateral treated kidney after unilateral ischemic AKI. One month after injury, MSC/HA treatment significantly reduced urinary NGAL compared to controls; it did not significantly reduce markers of fibrosis compared to untreated controls. An analysis of kidney proteomes revealed decreased extracellular matrix remodeling and high overlap with sham proteomes in MSC/HA-treated animals. Hydrogel-assisted MSC delivery shows promise as a therapeutic treatment following acute kidney injury.


Assuntos
Injúria Renal Aguda , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Camundongos , Masculino , Animais , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Proteoma , Rim , Isquemia/terapia , Injúria Renal Aguda/terapia , Traumatismo por Reperfusão/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA