Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sports Med Arthrosc Rev ; 31(3): 67-72, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976127

RESUMO

Rotator cuff tears (RCTs) negatively impacts patient well-being. Artificial intelligence (AI) is emerging as a promising tool in medical decision-making. Within AI, deep learning allows to autonomously solve complex tasks. This review assesses the current and potential applications of AI in the management of RCT, focusing on diagnostic utility, challenges, and future perspectives. AI demonstrates promise in RCT diagnosis, aiding clinicians in interpreting complex imaging data. Deep learning frameworks, particularly convoluted neural networks architectures, exhibit remarkable diagnostic accuracy in detecting RCTs on magnetic resonance imaging. Advanced segmentation algorithms improve anatomic visualization and surgical planning. AI-assisted radiograph interpretation proves effective in ruling out full-thickness tears. Machine learning models predict RCT diagnosis and postoperative outcomes, enhancing personalized patient care. Challenges include small data sets and classification complexities, especially for partial thickness tears. Current applications of AI in RCT management are promising yet experimental. The potential of AI to revolutionize personalized, efficient, and accurate care for RCT patients is evident. The integration of AI with clinical expertise holds potential to redefine treatment strategies and optimize patient outcomes. Further research, larger data sets, and collaborative efforts are essential to unlock the transformative impact of AI in orthopedic surgery and RCT management.


Assuntos
Lesões do Manguito Rotador , Humanos , Lesões do Manguito Rotador/diagnóstico por imagem , Lesões do Manguito Rotador/cirurgia , Manguito Rotador/diagnóstico por imagem , Manguito Rotador/cirurgia , Inteligência Artificial , Imageamento por Ressonância Magnética , Aprendizado de Máquina
2.
Explor Drug Sci ; 1(2): 107-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37171968

RESUMO

Malignant brain tumors are the leading cause of cancer-related death in children and remain a significant cause of morbidity and mortality throughout all demographics. Central nervous system (CNS) tumors are classically treated with surgical resection and radiotherapy in addition to adjuvant chemotherapy. However, the therapeutic efficacy of chemotherapeutic agents is limited due to the blood-brain barrier (BBB). Magnetic resonance guided focused ultrasound (MRgFUS) is a new and promising intervention for CNS tumors, which has shown success in preclinical trials. High-intensity focused ultrasound (HIFU) has the capacity to serve as a direct therapeutic agent in the form of thermoablation and mechanical destruction of the tumor. Low-intensity focused ultrasound (LIFU) has been shown to disrupt the BBB and enhance the uptake of therapeutic agents in the brain and CNS. The authors present a review of MRgFUS in the treatment of CNS tumors. This treatment method has shown promising results in preclinical trials including minimal adverse effects, increased infiltration of the therapeutic agents into the CNS, decreased tumor progression, and improved survival rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA